
Programming Guide

Agilent Technologies
E8257D/67D PSG Signal Generators

This guide applies to the following signal generator models:
E8257D PSG Analog Signal Generator
E8267D PSG Vector Signal Generator

Due to our continuing efforts to improve our products through firmware and hardware revisions, signal
generator design and operation may vary from descriptions in this guide. We recommend that you use the
latest revision of this guide to ensure you have up-to-date product information. Compare the print date of this
guide (see bottom of page) with the latest revision, which can be downloaded from the following website:
www.agilent.com/find/psg
Manufacturing Part Number: E8251-90355

Printed in USA

August 2004

© Copyright 2004 Agilent Technologies, Inc..

Notice
The material contained in this document is provided “as is,” and is subject to being changed, without notice,
in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express
or implied with regard to this manual and to any of the Agilent products to which it pertains, including but
not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not
be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or
performance of this document or any of the Agilent products to which it pertains. Should Agilent have a
written contract with the User and should any of the contract terms conflict with these terms, the contract
terms shall control.

Questions or Comments about our Documentation?
We welcome any questions or comments you may have about our documentation. Please send us an E-mail
at sources_manuals@am.exch.agilent.com.
ii

Contents
1. Getting Started . 1
Introduction to Remote Operation .2

Interfaces .3

IO Libraries .3

Programming Language .3

Using GPIB .4

1. Installing the GPIB Interface Card .4

2. Selecting IO Libraries for GPIB .6

3. Setting Up the GPIB Interface .6

4. Verifying GPIB Functionality .7

GPIB Interface Terms .7

GPIB Function Statements .7

Using LAN .12

1. Selecting IO Libraries for LAN .12

2. Setting Up the LAN Interface .13

3. Verifying LAN Functionality .14

Using VXI-11 .16

Using Sockets LAN .17

Using Telnet LAN .18

Using FTP .22

Using RS-232 .25

1. Selecting IO Libraries for RS-232 .25

2. Setting Up the RS-232 Interface .26

3. Verifying RS-232 Functionality .27

Character Format Parameters .27

If You Have Problems .28

Error Messages .29

Error Message File .29

Error Message Types. .30

2. Programming Examples .31
Using the Programming Examples .32

Programming Examples Development Environment .32

Running C/C++ Programming Examples .33

Running Visual Basic 6.0 Programming Examples .34

GPIB Programming Examples .35

Before Using the Examples. .35

Interface Check using Agilent BASIC .36
iii

Contents

Interface Check Using NI-488.2 and C++ . 37

Interface Check using VISA and C. 38

Local Lockout Using Agilent BASIC. 39

Local Lockout Using NI-488.2 and C++ . 41

Queries Using Agilent BASIC . 42

Queries Using NI-488.2 and C++. 44

Queries Using VISA and C. 47

Generating a CW Signal Using VISA and C . 50

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C 52

Generating an Internal AC-Coupled FM Signal Using VISA and C . 54

Generating a Step-Swept Signal Using VISA and C . 56

Saving and Recalling States Using VISA and C . 58

Reading the Data Questionable Status Register Using VISA and C . 61

Reading the Service Request Interrupt (SRQ) Using VISA and C. 66

Using 8757D Pass-Thru Commands. 71

LAN Programming Examples . 74

Before Using the Examples . 74

VXI-11 LAN Programming . 74

Sockets LAN Programming using C . 75

Sockets LAN Programming Using PERL . 104

Sockets LAN Programming Using Java . 106

RS-232 Programming Examples . 109

Before Using the Examples . 109

Interface Check Using Agilent BASIC . 109

Interface Check Using VISA and C . 110

Queries Using Agilent BASIC . 112

Queries Using VISA and C. 113

3. Programming the Status Register System . 117
Overview . 118

Status Register Bit Values . 121

Accessing Status Register Information . 122

Determining What to Monitor . 122

Deciding How to Monitor. 123

Status Register SCPI Commands . 125

Status Byte Group. 127

Status Byte Register . 128

Service Request Enable Register . 129
 iv

Contents

Status Groups .130

Standard Event Status Group .131

Standard Operation Status Group .133

Baseband Operation Status Group .136

Data Questionable Status Group .139

Data Questionable Power Status Group .142

Data Questionable Frequency Status Group .145

Data Questionable Modulation Status Group .148

Data Questionable Calibration Status Group .151

4. Downloading and Using Files .155
Types of Memory .156

ARB Waveform Data .157

Data Requirements and Limitations .158

Downloading Waveforms .159

Loading and Playing a Waveform. .164

Troubleshooting ARB Waveform Data Download Problems .165

Understanding ARB Waveform File Composition and Encryption .166

Downloading and Uploading Waveform Files .166

Extracting Encrypted Waveform Files .166

Downloading Encrypted Waveform Files .167

Downloading User File Data .168

Data Requirements and Limitations .168

Bit and Binary Directories. .169

Selecting Downloaded User Files as the Transmitted Data .172

Troubleshooting User File Download Problems .172

Downloading FIR Filter Coefficients .173

Data Requirements and Limitations .173

Downloading FIR Filter Coefficients .174

Selecting a Downloaded User FIR Filter as the Active Filter. .175

Troubleshooting FIR Filter Coefficient File Download Problems .175

Downloading Directly into Pattern RAM (PRAM) .176

Preliminary Setup .176

Data Requirements and Limitations .177

Downloading in List Format .178

Downloading in Block Format .179

Modulating and Activating the Carrier .180

Viewing a PRAM Waveform .180
v

Contents

Troubleshooting Direct PRAM Download Problems . 181

Programming Examples for Generating and Downloading Files. 182

Waveform Generation Using MATLAB® . 182

Waveform Generation Using C++ . 186

Waveform Generation using Visual Basic 6.0® . 189

Downloading Using C++ and VISA. 192

Downloading Using HP BASIC for Windows . 197

Downloading Using HP BASIC for UNIX. 199

Downloading Using Visual Basic 6.0 . 201
 vi

1 Getting Started

This chapter provides the following major sections:

• “Introduction to Remote Operation” on page 2

• “Using GPIB” on page 4

• “Using LAN” on page 12

• “Using RS-232” on page 25

• “Error Messages” on page 29
1

Getting Started
Introduction to Remote Operation
Introduction to Remote Operation
PSG signal generators support the following interfaces:

• General Purpose Interface Bus (GPIB)

• Local Area Network (LAN)

• ANSI/EIA232 (RS-232) serial connection

Each of these interfaces, in combination with an IO library and programming language, can be used to
remotely control the signal generator. Figure 1-1 uses the GPIB as an example of the relationships between
the interface, IO libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers
2 Chapter 1

Getting Started
Introduction to Remote Operation
Interfaces
GPIB GPIB is used extensively when a dedicated computer is available for remote control of

each instrument or system. Data transfer is fast because the GPIB handles information
in 8-bit bytes. GPIB is physically restricted by the location and distance between the
instrument/system and the computer; cables are limited to an average length of two
meters per device with a total length of 20 meters.

LAN LAN based communication is supported by the signal generator. Data transfer is fast as
the LAN handles packets of data. The distance between a computer and the signal
generator is limited to 100 meters (10BASE-T). The following protocols can be used to
communicate with the signal generator over the LAN:

• Sockets LAN

• Telephone Network (Telnet)

• File Transfer Protocol (FTP)

RS-232 RS-232 is a common method used to communicate with a single instrument; its primary
use is to control printers and external disk drives, and connect to a modem.
Communication over RS-232 is much slower than with GPIB or LAN because data is
sent and received one bit at a time. It also requires that certain parameters, such as baud
rate, be matched on both the computer and signal generator.

IO Libraries
An IO library is a collection of functions used by a programming language to send instrument commands.
Before you can communicate and control the signal generator you must have an IO library installed on your
computer.

Programming Language
The programming language is used along with Standard Commands for Programming Instructions (SCPI)

and IO library functions to remotely control the signal generator. Common programming languages include:

• C/C++

• Agilent BASIC

• Visual Basic®

• PERL

• LabView®

• Java

 Java is a U.S. trademark of Sun Microsystems, Inc.
Chapter 1 3

Getting Started
Using GPIB
Using GPIB
The GPIB allows instruments to be connected together and controlled by a computer. The GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, www.ieee.org, for details on these standards.

1. Installing the GPIB Interface Card
A GPIB interface card must be installed in your computer. Two common GPIB interface cards are the
National Instruments (NI) PCI–GPIB and the Agilent GPIB interface cards. Follow the GPIB interface card
instructions for installing and configuring the card in your computer. The following tables provide
information on interface cards.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems

Interface
Card

Operating
System

IO Library Languages Backplane/BUS Max IO
(kB/sec)

Buffering

Agilent
82341C for
ISA bus
computers

Windows
95/98/NT/

2000®

Windows 95, 98, NT and 2000 are registered trademarks of Microsoft Corporation

VISA/
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

ISA/EISA,
16 bit

750 Built-in

Agilent
82341D
Plug&Play
for PC

Windows 95 VISA/
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

ISA/EISA,
16 bit

750 Built-in

Agilent
82350A for
PCI bus
computers

Windows
95/98/NT/
2000

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

PCI 32 bit 750 Built-in
4 Chapter 1

Getting Started
Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems

Interface
Card

Operating
System

IO Library Languages Backplane/BUS Max IO

National
Instrument’s
PCI-GPIB

Windows
95/98/2000/
ME/NT

VISA

NI-488.2
C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5 MB/s

National
Instrument’s
PCI-GPIB+

Windows NT VISA
NI-488.2

C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5 MB/s

NI-488.2 is a trademark of National Instruments Corporation

Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations

Interface
Card

Operating
System

IO Library Languages Backplane/BUS Max IO
(kB/sec)

Buffering

Agilent
E2071C

HP-UX 9.x,
HP-UX 10.01

VISA/
SICL

ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

EISA 750 Built-in

Agilent
E2071D

HP-UX 10.20 VISA/
SICL

ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

EISA 750 Built-in

Agilent
E2078A

HP-UX 10.20 VISA/
SICL

ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

PCI 750 Built-in
Chapter 1 5

Getting Started
Using GPIB
2. Selecting IO Libraries for GPIB
The IO libraries are included with your GPIB interface card. These libraries can also be downloaded from
the National Instruments or Agilent website. The following is a discussion on these libraries.

VISA VISA (Virtual Instrument Software Architecture) is an IO library used to develop IO
applications and instrument drivers that comply with industry standards. It is
recommended that the VISA library be used for programming the signal generator. The
NI-VISA and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower level IO
libraries; NI-488.2 and SICL respectively. It is best to use the Agilent VISA library with

the Agilent GPIB interface card or NI-VISA with the NI PCI-GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using SICL functions will
not run on a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 NI-488.2 can be used without the VISA overlay. The NI-488.2 functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using NI-488.2 functions
will not run on a computer with Agilent SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. Press Utility > GPIB/RS-232 > GPIB Address.

2. Use the numeric keypad, the arrow keys, or rotate the front panel knob to set the desired address.

The signal generator’s GPIB address is set to 19 at the factory. The acceptable range of addresses is 0
through 30. Once initialized, the state of the GPIB address is not affected by a signal generator preset or
by a power cycle. Other instruments on the GPIB cannot use the same address as the signal generator.

3. Press the Enter softkey.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to Table 1-4 for
cable part numbers.)

 NI-VISA is a registered trademark of National Instruments Corporation

Table 1-4 Agilent GPIB Cables

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters
6 Chapter 1

Getting Started
Using GPIB
4. Verifying GPIB Functionality
Use the VISA Assistant, available with the Agilent IO Library or the Getting Started Wizard available with
the National Instrument IO Library, to verify GPIB functionality. These utility programs allow you to
communicate with the signal generator and verify its operation over the GPIB. Refer to the Help menu
available in each utility for information and instructions on running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example programs in
Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured for your
PC.

GPIB Interface Terms
An instrument that is part of a GPIB network is categorized as a listener, talker, or controller, depending on
its current function in the network.

listener A listener is a device capable of receiving data or commands from other instruments.
Several instruments in the GPIB network can be listeners simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB system
allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including itself)
for an information transfer. Only one device at a time can be an active controller.

GPIB Function Statements
Function statements are the basis for GPIB programming and instrument control. These function statements
combined with SCPI provide management and data communication for the GPIB interface and the signal
generator. This section describes functions used by different IO libraries. Refer to the NI-488.2 Function
Reference Manual for Windows, Agilent Standard Instrument Control Library reference manual, and

Microsoft® Visual C++ 6.0 documentation for more information.

Abort Function

The Agilent BASIC function ABORT and the other listed IO library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.

 Microsoft is a registered trademark of Microsoft Corporation.
Chapter 1 7

Getting Started
Using GPIB
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate normal
execution of an asynchronous operation. The parameter list describes the session and
job id.

NI-488.2
Library The NI-488.2 library function aborts any asynchronous read, write, or command

operation that is in progress. The parameter ud is the interface or device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the session
id. This function is supported with C/C++ on Windows 3.1 and Series 700 HP-UX.

Remote Function

The Agilent BASIC function REMOTE and the other listed IO library functions cause the signal generator to
change from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key on the signal generator front panel
restores manual operation.

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with the
exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library This NI-488.2 library function asserts the Remote Enable (REN) GPIB line. All devices

listed in the parameter list are put into a listen-active state although no indication is
generated by the signal generator. The parameter list describes the interface or device
descriptor.

SICL The Agilent SICL function puts an instrument, identified by the id parameter, into
remote mode and disables the front panel keys. Pressing the Local key on the signal
generator front panel restores manual operation. The parameter id is the session
identifier.

Agilent BASIC VISA NI-488.2 Agilent SICL

10 ABORT 7 viTerminate (parameter list) ibstop(int ud) iabort (id)

Agilent BASIC VISA NI-488.2 Agilent SICL

10 REMOTE 719 N/A EnableRemote (parameter list) iremote (id)
8 Chapter 1

Getting Started
Using GPIB
Local Lockout Function

The Agilent BASIC function LOCAL LOCKOUT and the other listed IO library functions can be used to
disable the front panel keys including the Local key. With the Local key disabled, only the controller (or a
hard reset of the line power switch) can restore local control.

Agilent BASIC The LOCAL LOCKOUT function disables all front-panel signal generator keys. Return to
local control can occur only with a hard on/off, when the LOCAL command is sent or if
the Preset key is pressed.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library The NI-488.2 library function places the instrument described in the parameter list in

remote mode by asserting the Remote Enable (REN) GPIB line. The lockout state is
then set using the Local Lockout (LLO) GPIB message. Local control can be restored
only with the EnableLocal NI-488.2 routine or hard reset. The parameter list describes
the interface or device descriptor.

SICL The Agilent SICL igpibllo function prevents user access to front panel keys operation.
The function puts an instrument, identified by the id parameter, into remote mode with
local lockout. The parameter id is the session identifier and instrument address list.

Local Function

The Agilent BASIC function LOCAL and the other listed functions cause the signal generator to return to
local control with a fully enabled front panel.

Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation, allowing
access to the signal generator’s front panel keys.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library The NI-488.2 library function places the interface in local mode and allows operation of

the signal generator’s front panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

Agilent BASIC VISA NI-488.2 Agilent SICL

10 LOCAL LOCKOUT 719 N/A SetRWLS (parameter list) igpibllo (id)

Agilent BASIC VISA NI-488.2 Agilent SICL

10 LOCAL 719 N/A ibloc (int ud) iloc(id)
Chapter 1 9

Getting Started
Using GPIB
SICL The Agilent SICL function puts the signal generator into Local operation; enabling front
panel key operation. The id parameter identifies the session.

Clear Function

The Agilent BASIC function CLEAR and the other listed IO library functions cause the signal generator to
assume a cleared condition.

Agilent BASIC The CLEAR 719 function causes all pending output-parameter operations to be halted,
the parser (interpreter of programming codes) to reset and prepare for a new
programming code, stops any sweep in progress, and continuous sweep to be turned off.

VISA Library The VISA library uses the viClear function. This function performs an IEEE 488.1 clear
of the signal generator.

NI-488.2
Library The NI-488.2 library function sends the GPIB Selected Device Clear (SDC) message to

the device described by ud.

SICL The Agilent SICL function clears a device or interface. The function also discards data
in both the read and write formatted IO buffers. The id parameter identifies the session.

Output Function

The Agilent BASIC IO function OUTPUT and the other listed IO library functions put the signal generator
into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Agilent BASIC The function OUTPUT 719 puts the signal generator into remote mode, makes it a
listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to output data.
This function formats according to the format string and sends data to the device. The
parameter list describes the session id and data to send.

Agilent BASIC VISA NI-488.2 Agilent SICL

10 CLEAR 719 viClear(ViSession vi) ibclr(int ud) iclear (id)

Agilent BASIC VISA NI-488.2 Agilent SICL

10 OUTPUT 719 viPrintf(parameter
list)

ibwrt(parameter
list)

iprintf (parameter
list)
10 Chapter 1

Getting Started
Using GPIB
NI-488.2
Library The NI-488.2 library function addresses the GPIB and writes data to the signal

generator. The parameter list includes the instrument address, session id, and the data to
send.

SICL The Agilent SICL function converts data using the format string. The format string
specifies how the argument is converted before it is output. The function sends the
characters in the format string directly to the instrument. The parameter list includes the
instrument address, data buffer to write, and so forth.

Enter Function

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other IO libraries use
similar functions to read data from the signal generator.

Agilent BASIC The function ENTER 719 puts the signal generator into remote mode, makes it a talker,
and assigns data or status information to a designated variable.

VISA Library The VISA library uses the viScanf function and an associated parameter list to receive
data. This function receives data from the instrument, formats it using the format string,
and stores the data in the argument list. The parameter list includes the session id and
string argument.

NI-488.2
Library The NI-488.2 library function addresses the GPIB, reads data bytes from the signal

generator, and stores the data into a specified buffer. The parameter list includes the
instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, and stores the results into
the argument list. The conversion is done using conversion rules for the format string.
The parameter list includes the instrument address, formatted data to read, and so forth.

Agilent BASIC VISA NI-488.2 Agilent SICL

10 ENTER 719; viScanf (parameter list) ibrd (parameter list) iscanf (parameter list)
Chapter 1 11

Getting Started
Using LAN
Using LAN
The signal generator can be remotely programmed via a LAN interface and LAN-connected computer using
one of several LAN interface protocols. The LAN allows instruments to be connected together and
controlled by a LAN-based computer. LAN and its associated interface operations are defined in the IEEE
802.2 standard. See the IEEE website for more details.

The signal generator supports the following LAN interface protocols:

• Sockets LAN
• VXI-11(VMEbus Extensions for Instrumentation as defined in VXI-11)
• Telephone Network (Telnet)
• File Transfer Protocol (FTP)

VXI-11 is the best method to use for instrument communication using the LAN interface. Sockets LAN can
be used for general programming using the LAN interface, Telnet is used for interactive, one command at a
time instrument control, and FTP is for file transfer. Refer to “VXI-11 LAN Programming” on page 74 for
more information on the VXI-11 protocol.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

1. Selecting IO Libraries for LAN
The Telnet and FTP protocols do not require IO libraries. However, to write programs that control your
signal generator, an I/O library must be installed on your computer and the computer configured for
instrument control using the LAN interface.

The IO libraries can be downloaded from the Agilent website. The following is a discussion on these
libraries.

Agilent IO Library The Agilent IO Library is a collection of libraries and includes the SICL and VISA
Libraries. The VISA Library is an IO library used to develop IO applications and
instrument drivers that comply with industry standards. Use the Agilent VISA library
for programming the signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent VISA.
12 Chapter 1

Getting Started
Using LAN
2. Setting Up the LAN Interface
For LAN operation, the signal generator must be connected to the LAN, and an IP address must be assigned
to the signal generator either manually or by using DHCP (Dynamic Host Configuration Protocol). Your
system administrator can tell you which method to use.

Manual Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup > Hostname.

2. Use the labeled text softkeys and/or numeric keypad to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.

3. Press the Enter softkey.

4. Set LAN Config Manual DHCP to Manual.

5. Press IP Address and enter a desired address.
Use the left and right arrow keys to move the cursor. Use the up and down arrow keys, front panel knob,
or numeric keypad to enter an IP address. To erase the current IP address, press the Clear Text softkey.

NOTE To remotely access the signal generator from a different LAN subnet, you must also enter
the subnet mask and default gateway. See your system administrator for the appropriate
values.

6. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action assigns a hostname and IP address (as well as a gateway and subnet mask, if these have been
configured) to the signal generator. The hostname, IP address, gateway and subnet mask are not affected
by an instrument preset or by a power cycle.

7. Connect the signal generator to the LAN using a 10BASE-T LAN cable.

DHCP Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

NOTE If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address,
the hostname may be used in place of the IP address. Otherwise, the hostname is not usable
and you may skip steps 2 through 4.

2. Press Hostname.

3. Use the labeled text softkeys and/or numeric keypad to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.
Chapter 1 13

Getting Started
Using LAN
4. Press the Enter softkey.

5. Set LAN Config Manual DHCP to DHCP.

6. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This configures the signal generator as a DHCP client. In DHCP mode, the signal generator requests a
new IP address from the DHCP server upon rebooting. You can return to the LAN Setup menu after
rebooting to determine the assigned IP address.

7. Connect the signal generator to the LAN using a 10BASE-T LAN cable.

LAN Services Setup

Before you can use the LAN interface to control the signal generator you must enable the protocol you want
to use. The signal generator supports: FTP Server, Web Server, Sockets SCPI, and WXI-11 SCPI protocols.

1. Press Utility > GPIB/RS-232 LAN > LAN Services Setup.

2. Press the softkey for the LAN service (s) you want to enable so that On is selected.

3. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey

4. Press the Enter softkey.

This action will configure the signal generator to use the selected LAN protocol.

3. Verifying LAN Functionality
Verify the communications link between the computer and the signal generator remote file server using the
ping utility. Compare your ping response to those described in Table 1-5.

From a UNIX workstation, type:

 ping <hostname or IP address> 64 10

where <hostname or IP address> is your instrument’s name or IP address, 64 is the packet size, and
10 is the number of packets transmitted. Type man ping at the UNIX prompt for details on the ping
command.

From the MS-DOS® Command Prompt or Windows environment, type:

 ping -n 10 <hostname or IP address>

where <hostname or IP address> is your instrument’s name or IP address and 10 is the number of
echo requests. Type ping at the command prompt for details on the ping command.

 MS-DOS is a registered trademark of Microsoft Corporation
14 Chapter 1

Getting Started
Using LAN
NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned IP address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the IP address to communicate with the signal
generator over the LAN.

Table 1-5 Ping Responses

Normal Response for
UNIX

A normal response to the ping command will be a total of 9 or 10 packets
received with a minimal average round-trip time. The minimal average will be
different from network to network. LAN traffic will cause the round-trip time
to vary widely.

Normal Response for
DOS or Windows

A normal response to the ping command will be a total of 9 or 10 packets
received if 10 echo requests were specified.

Error Messages If error messages appear, check the command syntax before continuing with
troubleshooting. If the syntax is correct, resolve the error messages using your
network documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of
the hostname. Also, verify that the host name and IP address for the signal
generator have been registered by your IT administrator.

Check that the hostname and IP address are correctly entered in the node
names database. To do this, enter the nslookup <hostname> command
from the command prompt.

No Response If there is no response from a ping, no packets were received. Check that the
typed address or hostname matches the IP address or hostname assigned to the
signal generator in the System Utility > GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the signal
generator, starting with your workstation. If a node doesn’t respond, contact
your IT administrator.

If the signal generator still does not respond to ping, you should suspect a
hardware problem.

Intermittent Response If you received 1 to 8 packets back, there maybe a problem with the network.
In networks with switches and bridges, the first few pings may be lost until the
these devices ‘learn’ the location of hosts. Also, because the number of
packets received depends on your network traffic and integrity, the number
might be different for your network. Problems of this nature are best resolved
by your IT department.
Chapter 1 15

Getting Started
Using LAN
Using VXI-11
The signal generator supports the VXI-11 protocol for instrument control using the LAN interface. The
VXI-11 protocol is an industry standard, instrument communication protocol, described in the VXI-11
standard. Refer to the VXIbus Consortium.Inc website at www.vxi.org/freepdfdownloads for more
information.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

The VXI-11 protocol uses Open Network Computing/Remote Procedure Calls (ONC/RPC) running over
TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service Request), status byte reading, and
DCAS (Device Clear State) over a LAN interface. The VXI-11 standard allows IEEE 488.2 messages and
IEEE 488.1 instrument control messages.

Configuring for VXI-11

The Agilent I/O library I/O Config program can setup the computer/signal generator for the VXI-11
interface. Download the latest version of the Agilent I/O library from the Agilent website. Refer to the
Agilent I/O library user manual, documentation, and Help menu for information on running the I/O Config
program and configuring the VXI-11 interface.

The I/O Config program can automatically configure the LAN client. Once the computer is configured for a
LAN client, you can use VISA library functions to send SCPI commands to the signal generator over the
LAN interface. An example program using the VXI interface is included in “LAN Programming Examples”
on page 74 of this programming guide.
16 Chapter 1

Getting Started
Using LAN
Figure 1-2 IO Config Form

Using Sockets LAN
Sockets LAN is a method used to communicate with the signal generator over the LAN interface using the
Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is a fundamental technology used for
computer networking and allows applications to communicate using standard mechanisms built into
network hardware and operating systems. The method accesses a port on the signal generator from which
bidirectional communication with a network computer can be established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a device port
number and represents a single connection between two pieces of software. The socket can be accessed
using code libraries packaged with the computer operating system. Two common versions of socket libraries
are the Berkeley Sockets Library for UNIX systems and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is compatible
with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal generator is also
compatible with other standard sockets APIs. The signal generator can be controlled using SCPI commands
that are output to a socket connection established in your program.

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

• Standard mode. Available on port 5025. Use this port for simple programming.

• Telnet mode. The Telnet SCPI service is available on port 5023.
Chapter 1 17

Getting Started
Using LAN
NOTE The signal generator will accept references to Telnet SCPI service at port 7777 and sockets
SCPI service at port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.

Using Telnet LAN
Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client, run on
a LAN connected computer, will create a login session on the signal generator. A connection, established
between computer and signal generator, generates a user interface display screen with SCPI> prompts on the
command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with the
signal generator over GPIB. You establish a connection with the signal generator and then send or receive
information using SCPI commands. Communication is interactive: one command at a time.

NOTE The Windows 2000 ®operating system uses a command prompt style interface for the

Telnet client. Refer to the Figure 1-5 on page 21 for an example of this interface.

Using Telnet and MS-DOS Command Prompt

1. On your PC, click Start > Programs > Command Prompt.

2. At the command prompt, type in telnet.

3. Press the Enter key. The Telnet display screen will be displayed.

4. Click on the Connect menu then select Remote System. A connection form (Figure 1-3) is displayed.

Connect Form

 Windows 2000 is a registered trademark of Microsoft Corporation.
18 Chapter 1

Getting Started
Using LAN
Figure 1-3

5. Enter the hostname, port number, and TermType then click Connect.

• Host Name−IP address or hostname
• Port−5023
• Term Type−vt100

6. At the SCPI> prompt, enter SCPI commands. Refer to Figure 1-4 on page 20.

7. To signal device clear, press Ctrl-C on your keyboard.

8. Select Exit from the Connect menu and type exit at the command prompt to end the Telnet session.

Using Telnet On a PC With a Host/Port Setting Menu GUI

1. On your PC, click Start > Run.

2. Type telnet then click the OK button. The Telnet connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form is displayed. See Figure 1-3.

4. Enter the hostname, port number, and TermType then click Connect.

• Host Name−signal generator’s IP address or hostname
• Port−5023
• Term Type−vt100

5. At the SCPI> prompt, enter SCPI commands. Refer to Figure 1-4 on page 20.

6. To signal device clear, press Ctrl-C.

7. Select Exit from the Connect menu to end the Telnet session.
Chapter 1 19

Getting Started
Using LAN
Figure 1-4 Telnet Window

Using Telnet On Windows 2000

1. On your PC, click Start > Run.

2. Type telnet in the run text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 1-5 on page 21.

3. Type open at the prompt and then press the Enter key. The prompt will change to (to).

4. At the (to) prompt, enter the signal generator’s IP address followed by a space and 5023,which is the
Telnet port associated with the signal generator.

5. At the SCPI> prompt, enter SCPI commands. Refer to commands shown in Figure 1-4 on page 20.

6. To escape from the SCPI> session type Ctrl-].

7. Type quit at the prompt to end the Telnet session.
20 Chapter 1

Getting Started
Using LAN
Figure 1-5 Telnet 2000 Window

The Standard UNIX Telnet Command

Synopsis

telnet [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the command
telnet is invoked with host or port arguments, a connection is opened to the host, and input is sent from
the user to the host.

Options and Parameters

The command telnet operates in character-at-a-time or line-by-line mode. In line-by-line mode, typed text
is echoed to the screen. When the line is completed (by pressing the Enter key), the text line is sent to host.
In character-at-a-time mode, text is echoed to the screen and sent to host as it is typed. At the UNIX
prompt, type man telnet to view the options and parameters available with the telnet command.

NOTE If your Telnet connection is in line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
the telnet> prompt, type mode char. If this does not work, consult your Telnet
program's documentation.
Chapter 1 21

Getting Started
Using LAN
Unix Telnet Example

To connect to the instrument with host name myInstrument and port number 7778, enter the following
command on the command line: telnet myInstrument 5023

When you connect to the signal generator, the UNIX window will display a welcome message and a SCPI
command prompt. The instrument is now ready to accept your SCPI commands. As you type SCPI
commands, query results appear on the next line. When you are done, break the Telnet connection using an
escape character. For example, Ctrl -],where the control key and the] are pressed at the same time. The
following example shows Telnet commands:

$ telnet myinstrument 5023

Trying....

Connected to signal generator

Escape character is ‘^]’.

Agilent Technologies, E8254A SN-US00000001

Firmware:

Hostname: your instrument

IP :xxx.xx.xxx.xxx

SCPI>

Using FTP
FTP allows users to transfer files between the signal generator and any computer connected to the LAN. For
example, you can use FTP to download instrument screen images to a computer. When logged onto the
signal generator with the FTP command, the signal generator’s file structure can be accessed. Figure 1-6
shows the FTP interface and lists the directories in the signal generator’s user level directory.

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1. On the PC click Start > Programs > Command Prompt.

2. At the command prompt enter:

ftp <IP address> or <hostname>

3. At the User: prompt, press the Enter key.

4. At the Password: prompt, the Enter key.

You are now in the signal generator’s user directory. Typing help at the command prompt will show you
the FTP commands that are available on your system. Use the cd command to change to and open a
directory in the signal generator where a file is to be stored or retrieved.
22 Chapter 1

Getting Started
Using LAN
You can download files to the signal generator from the directory in your PC where the command
prompt is located by using the put command: put "<file name>"

An example of this command might be as follows: put <file_name> /USER/WAVEFORM/<file_name1>
where <file_name> is the name of the file to download and <file_name1> the name of the file that will
appear in the signal generator’s memory.

If you have a marker file associated with the waveform file, use the following command to download it
to the signal generator: put <marker file_name> /USER/MARKERS/<file_name1

NOTE In the examples above the waveform and marker files are saved to the signal generator’s
non-volatile (NVWFM) waveform memory. You can save the files to volatile (WFM1)
memory for immediate playing by the signal generator by changing the command to:
/USER/BBG1/WAVEFORM for the waveform file and /USER/BBG1/MARKERS for the
marker file. Note that the marker and waveform file have the same file name.

To upload a file from the signal generator to the directory in your PC where the command prompt is
located use the get command: get "<file name>"

NOTE If no marker file is provided, the signal generator will automatically create a default marker
file initialized with zeros.

5. Type quit or bye to end your FTP session.

6. Type exit to end the command prompt session.
Chapter 1 23

Getting Started
Using LAN
Figure 1-6 FTP Screen
24 Chapter 1

Getting Started
Using RS-232
Using RS-232
The RS-232 serial interface can be used to communicate with the signal generator. The RS-232 connection
is standard on most PCs and can be connected to the signal generator’s rear-panel AUXILIARY
INTERFACE connector using the cable described in Table 1-6 on page 26. Many functions provided by
GPIB, with the exception of indefinite blocks, serial polling, GET, non-SCPI remote languages, and remote
mode are available using the RS-232 interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is slow. The data
transmitted and received is usually in ASCII format with SCPI commands being sent to the signal generator
and ASCII data returned.

1. Selecting IO Libraries for RS-232
The IO libraries can be downloaded from the National Instrument website, www.ni.com, or Agilent’s
website, www.agilent.com. The following is a discussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive IO library that can be used to control the
signal generator over the RS-232 interface. This library has many low level functions
that can be used in BASIC applications to control the signal generator over the RS-232
interface.

VISA VISA is an IO library used to develop IO applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISA and Agilent VISA libraries are similar
implementations of VISA and have the same commands, syntax, and functions. The
differences are in the lower level IO libraries used to communicate over the RS-232;
NI-488.2 and SICL respectively.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
RS-232 interface.

NI-488.2 NI-488.2 IO libraries can be used to develop applications for the RS-232 interface. See
National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the RS-232 interface. See
Agilent’s website for information on SICL.
Chapter 1 25

Getting Started
Using RS-232
2. Setting Up the RS-232 Interface

1. Press Utility > GPIB/RS-232 LAN> RS-232 Setup > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the baud rate of
your computer or UNIX workstation or adjust the baud rate settings on your computer to match the baud
rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to the signal
generator and prints them to the display.

3. Connect an RS-232 cable from the computer’s serial connector to the signal generator’s AUXILIARY
INTERFACE connector. Refer to Table 1-6 for RS-232 cable information.

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires pins 2, 3, 5, 7,
and 8 may be used.

Table 1-6 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number

1 Serial RS-232 cable 9-pin (male) to 9-pin
(female)

8120-6188
26 Chapter 1

Getting Started
Using RS-232
3. Verifying RS-232 Functionality
You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator COM 1 or COM 2 serial ports and perform the following steps:

1. On the PC click Start > Programs > Accessories > HyperTerminal and select HyperTerminal.
2. Enter a name for the session in the text box and select an icon.
3. Select COM1 (COM2 can be used if COM1 is unavailable), and set the following parameters:

• Bits per second: 9600 must match signal generator’s baud rate; on the signal generator, press
Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Baud Rate > 9600.

• Data bits: 8
• Parity: None
• Stop bits: 1
• Flow Control: None

NOTE Flow control, via the RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore this if flow control is set to None. However, to
control the signal generator programatically or download files to the signal generator, you
must enable RTS-CTS (hardware) flow control on the controller. Note that only the RTS
line is currently used.

4. Go to the HyperTerminal window and select File > Properties
5. Go to Settings > Emulation and select VT100.
6. Leave the Backscroll buffer lines set to the default value.
7. Go to Settings > ASCII Setup.
8. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *IDN? followed by <Ctrl j> in the
HyperTerminal window. The <Ctrl j> is the new line character (on the keyboard press the Cntrl key and
the j key simultaneously). The signal generator should return a string similar to the following, depending on
model: Agilent Technologies <instrument model name and number>, US40000001,C.02.00

Character Format Parameters
The signal generator uses the following character format parameters when communicating via RS-232:

• Character Length: Eight data bits are used for each character, excluding start, stop, and parity bits.
• Parity Enable: Parity is disabled (absent) for each character.
• Stop Bits: One stop bit is included with each character.
Chapter 1 27

Getting Started
Using RS-232
If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal generator.
2. Verify that the RS-232 cable is identical to the cable specified in Table 1-6.
3. Verify that the application is using the correct computer COM port and that the RS-232 cable is properly

connected to that port.
4. Verify that the controller’s flow control is set to RTS-CTS.
5. Press the Reset RS-232 softkey and restart the HyperTerminal application.
28 Chapter 1

Getting Started
Error Messages
Error Messages
If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface) error
queue and the front panel display error queue. These two queues are viewed and managed separately; for
information on the front panel display error queue, refer to the User’s Guide.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and the
<error_description> portions of the error query response are displayed on the host terminal.

Error Message File
A complete list of error messages is provided in the file errormesages.pdf, on the CD-ROM supplied with
your instrument. In the error message list, an explanation is generally included with each error to further
clarify its meaning. The error messages are listed numerically. In cases where there are multiple listings for
the same error number, the messages are in alphabetical order.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Overflow Handling
Linear, first-in/first-out.
Replaces newest error with: -350, Queue overflow

Viewing Entries Use SCPI query SYSTem:ERRor[:NEXT]?

Clearing the Queue
Power up
Send a *CLS command
Read last item in the queue

Unresolved Errors

Errors that must be resolved. For example, unlock.

Re-reported after queue is cleared.

No Errors
When the queue is empty (every error in the queue has been read, or the queue is cleared),
the following message appears in the queue:
+0, "No error"
Chapter 1 29

Getting Started
Error Messages
Error Message Types
Events do not generate more than one type of error. For example, an event that generates a query error will
not generate a device-specific, execution, or command error.

Query Errors (–499 to –400) indicate that the instrument’s output queue control has detected a problem
with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class set the query
error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors correspond to message
exchange protocol errors described in IEEE 488.2, 6.5. In this case:

• Either an attempt is being made to read data from the output queue when no output is either present or
pending, or

• data in the output queue has been lost.

Device Specific Errors (–399 to –300, 201 to 703, and 800 to 810) indicate that a device operation did not
properly complete, possibly due to an abnormal hardware or firmware condition. These codes are also used
for self-test response errors. Errors in this class set the device-specific error bit (bit 3) in the event status
register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that the
instrument detected an error within the GPIB system, within the instrument’s firmware or hardware, during
the transfer of block data, or during calibration.

Execution Errors (–299 to –200) indicate that an error has been detected by the instrument’s execution
control block. Errors in this class set the execution error bit (bit 4) in the event status register (IEEE 488.2,
section 11.5.1). In this case:

• Either a <PROGRAM DATA> element following a header was evaluated by the device as outside of its
legal input range or is otherwise inconsistent with the device’s capabilities, or

• a valid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed. Rounding
a numeric data element, for example, is not reported as an execution error.

Command Errors (–199 to –100) indicate that the instrument’s parser detected an IEEE 488.2 syntax error.
Errors in this class set the command error bit (bit 5) in the event status register (IEEE 488.2, section 11.5.1).
In this case:

• Either an IEEE 488.2 syntax error has been detected by the parser (a control-to-device message was
received that is in violation of the IEEE 488.2 standard. Possible violations include a data element that
violates device listening formats or whose type is unacceptable to the device.), or

• an unrecognized header was received. These include incorrect device-specific headers and incorrect or
unimplemented IEEE 488.2 common commands.
30 Chapter 1

2 Programming Examples

This chapter provides the following major sections:

• “Using the Programming Examples” on page 32

• “GPIB Programming Examples” on page 35

• “LAN Programming Examples” on page 74

• “RS-232 Programming Examples” on page 109
31

Programming Examples
Using the Programming Examples
Using the Programming Examples
The programming examples for remote control of the signal generator use the GPIB, LAN, and RS-232
interfaces and demonstrate instrument control using different I/O libraries and programming languages.
Many of the example programs in this chapter are interactive; the user will be prompted to perform certain
actions or verify signal generator operation or functionality. Example programs are written in the following
languages:

• Agilent BASIC

• C/C++

• Java

• PERL

• Microsoft Visual Basic 6.0

See Chapter 1 of this programming guide for information on interfaces, I/O libraries, and programming
languages.

NOTE For information on downloading waveform files refer to “Programming Examples for
Generating and Downloading Files” on page 182.

The example programs are also available on the PSG Documentation CD-ROM, enabling you to cut and
paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Local key, are disabled. Press the Local key to revert to manual operation.

NOTE To update the signal generator’s front panel display so that it reflects remote command
setups, enable the remote display: press Utility > Display > Update in Remote Off On softkey
until On is highlighted or send the SCPI command :DISPlay:REMote ON. For faster test
execution, disable front panel updates.

Programming Examples Development Environment
The C/C++ examples in this guide were written using an IBM-compatible personal computer (PC) with the
following configuration:
32 Chapter 2

Programming Examples
Using the Programming Examples
• Pentium® processor

• Windows NT 4.0 operating system. Programs for creating and downloading files to the signal generator
were run on a Windows 2000 operating system.

• C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

• National Instruments PCI- GPIB interface card or Agilent GPIB interface card. Some programs for
creating and downloading files to the signal generator use the LAN interface.

• National Instruments VISA Library or Agilent VISA library

• COM1 or COM2 serial port available

• LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation

Running C/C++ Programming Examples
To run the example programs written in C/C++ you must include the required files in the Microsoft Visual
C++ 6.0 project.

NOTE If you encounter the error message C1010 when running the C/C++ programs then use the
not using precompiled header option in the IDE.

If you are using the VISA library do the following:

• add the visa32.lib file to the Resource Files

• add the visa.h file to the Header Files

If you are using the NI-488.2 library do the following:

• add the GPIB-32.OBJ file to the Resource Files

• add the windows.h file to the Header Files

• add the Deci-32.h file to the Header Files

Refer to the National Instrument website for information on the NI-488.2 library and file requirements. For
information on the VISA library see the Agilent website.

The example C++ programs are available on the PSG Documentation CD-ROM, enabling you to cut and
paste the examples into a text editor.

 Pentium is a U.S. registered trademark of Intel Corporation
Chapter 2 33

Programming Examples
Using the Programming Examples
Running Visual Basic 6.0 Programming Examples
To run the example programs written in Visual Basic 6.0 you must include references to the IO Libraries. In
the Visual Basic IDE (Integrated Development Environment) go to Project–References and place a
check mark on the following references:

• Agilent VISA COM Resource Manager 1.0

• VISA COM 1.0 Type Library

NOTE If you want to use VISA functions such viWrite, then you must add the visa32.bas module
to your Visual Basic project.

You can start a new Standard EXE project and add the required references. Once the required references are
include, you can copy the example programs into your project and add a command button to Form1 that
will call the program.

The example Visual Basic 6.0 programs are available on the PSG Documentation CD-ROM, enabling you to
cut and paste the examples into your project.
34 Chapter 2

Programming Examples
GPIB Programming Examples
GPIB Programming Examples
• “Interface Check using Agilent BASIC” on page 36

• “Interface Check Using NI-488.2 and C++” on page 37

• “Interface Check using VISA and C” on page 38

• “Local Lockout Using Agilent BASIC” on page 39

• “Local Lockout Using NI-488.2 and C++” on page 41

• “Queries Using Agilent BASIC” on page 42

• “Queries Using NI-488.2 and C++” on page 44

• “Queries Using VISA and C” on page 47

• “Generating a CW Signal Using VISA and C” on page 50

• “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 52

• “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 54

• “Generating a Step-Swept Signal Using VISA and C” on page 56

• “Saving and Recalling States Using VISA and C” on page 58

• “Reading the Data Questionable Status Register Using VISA and C” on page 61

• “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 66

• “Using 8757D Pass-Thru Commands” on page 71

Before Using the Examples
If the Agilent GPIB interface card is used, then the Agilent VISA library along with the Agilent SICL library
should be installed. If the National Instruments PCI-GPIB interface card is used, the NI-VISA library along
with the NI-488.2 library should be installed. Refer to “2. Selecting IO Libraries for GPIB” on page 6 and
the documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is addressed at 7 and
the signal generator at 19. The GPIB address designator for other libraries is typically
GPIB0 or GPIB1.
Chapter 2 35

Programming Examples
GPIB Programming Examples
Interface Check using Agilent BASIC
This program causes the signal generator to perform an instrument reset. The SCPI command *RST places
the signal generator into a pre-defined state and the remote annunciator (R) appears on the front panel
display.

The following program example is available on the PSG Documentation CD-ROM as basicex1.txt.

10 !**

20 !

30 ! PROGRAM NAME: basicex1.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the following commands and then

120 ! RUN the program:

130 !

140 !**

150 !

160 Sig_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local mode

180 CLEAR Sig_gen ! Clears any pending data I/O and resets the parser

190 REMOTE 719 ! Puts the signal generator into remote mode

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 OUTPUT Sig_gen;"*RST" ! Places the signal generator into a defined state

230 PRINT "The signal generator should now be in REMOTE."

240 PRINT

250 PRINT "Verify that the remote [R] annunciator is on. Press the `Local' key, "

260 PRINT "on the front panel to return the signal generator to local control."

270 PRINT
36 Chapter 2

Programming Examples
GPIB Programming Examples
280 PRINT "Press RUN to start again."

290 END ! Program ends

Interface Check Using NI-488.2 and C++
This example uses the NI-488.2 library to verify that the GPIB connections and interface are functional.
Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the PSG Documentation CD-ROM as niex1.cpp.

// ***

//

// PROGRAM NAME: niex1.cpp

//

// PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

// interface are functional.

//

// Connect a GPIB cable from the PC GPIB card to the signal generator

// Enter the following code into the source .cpp file and execute the program

//

// ***

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{

Chapter 2 37

Programming Examples
GPIB Programming Examples
 int sig; // Declares a device descriptor variable

 sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor

 ibclr(sig); // Sends device clear message to signal generator

 ibwrt(sig, "*RST", 4); // Places the signal generator into a defined state

 // Print data to the output window

 cout << "The signal generator should now be in REMOTE. The remote indicator"<<endl;

 cout <<"annunciator R should appear on the signal generator display"<<endl;

 return 0;

}

Interface Check using VISA and C
This program uses VISA library functions and the C language to communicate with the signal generator.
The program verifies that the GPIB connections and interface are functional. Start Microsoft Visual C++ 6.0,
add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex1.cpp.

//**

// PROGRAM NAME:visaex1.cpp

//

// PROGRAM DESCRIPTION:This example program verifies that the GPIB connections and

// and interface are functional.

// Turn signal generator power off then on and then run the progam

//

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>
38 Chapter 2

Programming Examples
GPIB Programming Examples
void main ()

{

ViSession defaultRM, vi; // Declares a variable of type ViSession

 // for instrument communication

ViStatus viStatus = 0;

 // Opens a session to the GPIB device

 // at address 19

viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); // initializes signal generator

 // prints to the output window

printf("The signal generator should now be in REMOTE. The remote
indicator\n");

printf("annunciator R should appear on the signal generator display\n");

printf("\n");

viClose(vi); // closes session

viClose(defaultRM); // closes default session

}

Local Lockout Using Agilent BASIC
This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys.

The following program example is available on the PSG Documentation CD-ROM as basicex2.txt.

10 !***

20 !

30 ! PROGRAM NAME: basicex2.txt
Chapter 2 39

Programming Examples
GPIB Programming Examples
40 !

50 ! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal generators

60 ! functional front panel keys are disabled except for

70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command will disable the Local key.

90 ! The LOCAL command, executed from the controller, is then

100 ! the only way to return the signal generator to front panel,

110 ! Local, control.

120 !***

130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Sig_gen ! Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in local mode

160 REMOTE Sig_gen ! Places the signal generator in remote mode

170 CLEAR SCREEN ! Clears the controllers display

180 OUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state

190 ! The following print statements are user prompts

200 PRINT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R' and 'L' annunciators are visable"

220 PRINT ".......... Press Continue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT mode

250 PRINT ! Prints user prompt messages

260 PRINT "Signal generator should now be in LOCAL LOCKOUT mode."

270 PRINT

280 PRINT "Verify that all keys including `Local' (except Contrast keys) have no effect."

290 PRINT

300 PRINT ".......... Press Continue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control

340 ! The following print statements are user prompts

350 PRINT "Signal generator should now be in Local mode."
40 Chapter 2

Programming Examples
GPIB Programming Examples
360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."

380 PRINT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++
This example uses the NI-488.2 library to set the signal generator local lockout mode. Start Microsoft Visual
C++ 6.0, add the required files, and enter the following code into your .cpp source file. This example is
available on the PSG Documentation CD-ROM as niex2.cpp.

// **

// PROGRAM NAME: niex2.cpp

//

// PROGRAM DESCRIPTION: This program will place the signal generator into

// LOCAL LOCKOUT mode. All front panel keys, except the Contrast key, will be disabled.

// The local command, 'ibloc(sig)' executed via program code, is the only way to

// return the signal generator to front panel, Local, control.

// **

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declares a variable of type Addr4882_t

int main()

{

int sig; // Declares variable to hold interface descriptor

sig = ibdev(0, 19, 0, 13, 1, 0); // Opens and initialize a device descriptor

ibclr(sig); // Sends GPIB Selected Device Clear (SDC) message
Chapter 2 41

Programming Examples
GPIB Programming Examples
ibwrt(sig, "*RST", 4); // Places signal generator in a defined state

cout << "The signal generator should now be in REMOTE. The remote mode R "<<endl;

cout <<"annunciator should appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n');

SendIFC(GPIB0); // Resets the GPIB interface

Address[0]=19; // Signal generator's address

Address[1]=NOADDR; // Signifies end element in array. Defined in
 // DECL-32.H

SetRWLS(GPIB0, Address); // Places device in Remote with Lockout State.

cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
keys"<<endl;

cout<< "including the 'Local' key are disabled (Contrast keys are not
affected)"<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n');

ibloc(sig); // Returns signal generator to local control

cout<<endl;

cout<<"The signal generator should now be in local mode\n";

return 0;}

}

Queries Using Agilent BASIC
This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the identify
command *IDN?

The following program example is available on the PSG Documentation CD-ROM as basicex3.txt.

10 !**

20 !

30 ! PROGRAM NAME: basicex3.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used with response

60 ! data formats.
42 Chapter 2

Programming Examples
GPIB Programming Examples
70 !

80 ! CLEAR and RESET the controller and RUN the following program:

90 !

100 !**

110 !

120 DIM A$[10],C$[100],D$[10] ! Declares variables to hold string response data

130 INTEGER B ! Declares variable to hold integer response data

140 Sig_gen=719 ! Declares variable to hold signal generator address

150 LOCAL Sig_gen ! Puts signal generator in Local mode

160 CLEAR Sig_gen ! Resets parser and clears any pending output

170 CLEAR SCREEN ! Clears the controller’s display

180 OUTPUT Sig_gen;"*RST" ! Puts signal generator into a defined state

190 OUTPUT Sig_gen;"FREQ:CW?" ! Querys the signal generator CW frequency setting

200 ENTER Sig_gen;F ! Enter the CW frequency setting

210 ! Print frequency setting to the controller display

220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

230 PRINT

240 OUTPUT Sig_gen;"POW:AMPL?" ! Querys the signal generator power level

250 ENTER Sig_gen;W ! Enter the power level

260 ! Print power level to the controller display

270 PRINT "Current power setting is: ";W;"dBM"

280 PRINT

290 OUTPUT Sig_gen;"FREQ:MODE?" ! Querys the signal generator for frequency mode

300 ENTER Sig_gen;A$! Enter in the mode: CW, Fixed or List

310 ! Print frequency mode to the controller display

320 PRINT "Source's frequency mode is: ";A$

330 PRINT

340 OUTPUT Sig_gen;"OUTP OFF" ! Turns signal generator RF state off

350 OUTPUT Sig_gen;"OUTP?" ! Querys the operating state of the signal generator

360 ENTER Sig_gen;B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display

380 IF B>0 THEN
Chapter 2 43

Programming Examples
GPIB Programming Examples
390 PRINT "Signal Generator output is: on"

400 ELSE

410 PRINT "Signal Generator output is: off"

420 END IF

430 OUTPUT Sig_gen;"*IDN?" ! Querys for signal generator ID

440 ENTER Sig_gen;C$! Enter in the signal generator ID

450 ! Print the signal generator ID to the controller display

460 PRINT

470 PRINT "This signal generator is a ";C$

480 PRINT

490 ! The next command is a query for the signal generator's GPIB address

500 OUTPUT Sig_gen;"SYST:COMM:GPIB:ADDR?"

510 ENTER Sig_gen;D$! Enter in the signal generator's address

520 ! Print the signal generator's GPIB address to the controllers display

530 PRINT "The GPIB address is ";D$

540 PRINT

550 ! Print user prompts to the controller's display

560 PRINT "The signal generator is now under local control"

570 PRINT "or Press RUN to start again."

580 END

Queries Using NI-488.2 and C++
This example uses the NI-488.2 library to query different instrument states and conditions. Start Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as niex3.cpp.

//***

// PROGRAM NAME: niex3.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of query commands.

//

// The signal generator can be queried for conditions and instrument states.

// These commands are of the type "*IDN?" where the question mark indicates
44 Chapter 2

Programming Examples
GPIB Programming Examples
// a query.

//

//***

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declare a variable of type Addr4882_t

int main()

{

int sig; // Declares variable to hold interface descriptor

int num;

char rdVal[100]; // Declares variable to read instrument responses

sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor

ibloc(sig); // Places the signal generator in local mode

ibclr(sig); // Sends Selected Device Clear(SDC) message

ibwrt(sig, "*RST", 4); // Places signal generator in a defined state

ibwrt(sig, ":FREQuency:CW?",14); // Querys the CW frequency

ibrd(sig, rdVal,100); // Reads in the response into rdVal

rdVal[ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source CW frequency is "<<rdVal; // Print frequency of signal generator

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

ibwrt(sig, "POW:AMPL?",10); // Querys the signal generator

ibrd(sig, rdVal,100); // Reads the signal generator power level

rdVal[ibcntl] = '\0'; // Null character indicating end of array

 // Prints signal generator power level
Chapter 2 45

Programming Examples
GPIB Programming Examples
cout<<"Source power (dBm) is : "<<rdVal;

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

ibwrt(sig, ":FREQ:MODE?",11); // Querys source frequency mode

ibrd(sig, rdVal,100); // Enters in the source frequency mode

rdVal[ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source frequency mode is "<<rdVal; // Print source frequency mode

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

ibwrt(sig, "OUTP OFF",12); // Turns off RF source

ibwrt(sig, "OUTP?",5); // Querys the on/off state of the instrument

ibrd(sig,rdVal,2); // Enter in the source state

rdVal[ibcntl] = '\0';

num = (int (rdVal[0]) -('0'));

if (num > 0){

cout<<"Source RF state is : On"<<endl;

}else{

cout<<"Source RF state is : Off"<<endl;}

cout<<endl;

ibwrt(sig, "*IDN?",5); // Querys the instrument ID

ibrd(sig, rdVal,100); // Reads the source ID

rdVal[ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source ID is : "<<rdVal; // Prints the source ID

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

 ibwrt(sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address

ibrd(sig, rdVal,100); // Reads the source address

rdVal[ibcntl] = '\0'; // Null character indicates end of array

 // Prints the signal generator address

cout<<"Source GPIB address is : "<<rdVal;

cout<<endl;

cout<<"Press the 'Local' key to return the signal generator to LOCAL control”<<endl;
46 Chapter 2

Programming Examples
GPIB Programming Examples
cout<<endl;

return 0;

}

Queries Using VISA and C
This example uses VISA library functions to query different instrument states and conditions. Start
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex3.cpp.

//**

// PROGRAM FILE NAME:visaex3.cpp

//

// PROGRAM DESCRIPTION:This example demonstrates the use of query commands. The signal

// generator can be queried for conditions and instrument states. These commands are of

// the type "*IDN?"; the question mark indicates a query.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

#include <stdlib.h>

using namespace std;

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer [256]; // Declares variable to hold string data
Chapter 2 47

Programming Examples
GPIB Programming Examples
int num; // Declares variable to hold integer data

 // Initialize the VISA system

viStatus=viOpenDefaultRM(&defaultRM);

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

 printf("Check instruments and connections\n");

 printf("\n");

 exit(0);}

viPrintf(vi, "*RST\n"); // Resets signal generator

viPrintf(vi, "FREQ:CW?\n"); // Querys the CW frequency

viScanf(vi, "%t", rdBuffer); // Reads response into rdBuffer

 // Prints the source frequency

printf("Source CW frequency is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();

viPrintf(vi, "POW:AMPL?\n"); // Querys the power level

viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer

 // Prints the source power level

printf("Source power (dBm) is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();

viPrintf(vi, "FREQ:MODE?\n"); // Querys the frequency mode

viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer

 // Prints the source freq mode

printf("Source frequency mode is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();
48 Chapter 2

Programming Examples
GPIB Programming Examples
viPrintf(vi, "OUTP OFF\n"); // Turns source RF state off

viPrintf(vi, "OUTP?\n"); // Querys the signal generator's RF state

viScanf(vi, "%1i", &num); // Reads the response (integer value)

 // Prints the on/off RF state

 if (num > 0) {

printf("Source RF state is : on\n");

}else{

printf("Source RF state is : off\n");

}

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Chapter 2 49

Programming Examples
Generating a CW Signal Using VISA and C
Generating a CW Signal Using VISA and C
This example uses VISA library functions to control the signal generator. The signal generator is set for a
CW frequency of 500 kHz and a power level of −2.3 dBm. Start Microsoft Visual C++ 6.0, add the required
files, and enter the code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex4.cpp.

//**

// PROGRAM FILE NAME: visaex4.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates query commands. The signal generator

// frequency and power level.

// The RF state of the signal generator is turn on and then the state is queried. The

// response will indicate that the RF state is on. The RF state is then turned off and

// queried. The response should indicate that the RF state is off. The query results are

// printed to the to the display window.

//

//**

#include "StdAfx.h"

#include <visa.h>

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer [256]; // Declare variable to hold string data
50 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
int num; // Declare variable to hold integer data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA system

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); // Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CW frequency for 500 kHz

viPrintf(vi, "FREQ:CW?\n"); // Query the CW frequency

viScanf(vi, "%t", rdBuffer); // Read signal generator response

printf("Source CW frequency is : %s\n", rdBuffer); // Print the frequency

viPrintf(vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to -2.3 dBm

viPrintf(vi, "POW:AMPL?\n"); // Query the power level

viScanf(vi, "%t", rdBuffer); // Read the response into rdBuffer

printf("Source power (dBm) is : %s\n", rdBuffer); // Print the power level

viPrintf(vi, "OUTP:STAT ON\n"); // Turn source RF state on

viPrintf(vi, "OUTP?\n"); // Query the signal generator's RF state

viScanf(vi, "%1i", &num); // Read the response (integer value)

 // Print the on/off RF state

if (num > 0) {

printf("Source RF state is : on\n");

}else{

printf("Source RF state is : off\n");

}

printf("\n");

printf("Verify RF state then press continue\n");

printf("\n");
Chapter 2 51

Programming Examples
Generating a CW Signal Using VISA and C
getch();

viClear(vi);

viPrintf(vi,"OUTP:STAT OFF\n"); // Turn source RF state off

viPrintf(vi, "OUTP?\n"); // Query the signal generator's RF state

viScanf(vi, "%1i", &num); // Read the response

 // Print the on/off RF state

 if (num > 0) {

printf("Source RF state is now: on\n");

}else{

printf("Source RF state is now: off\n");

}

 // Close the sessions

printf("\n");

viClear(vi);

viClose(vi);

viClose(defaultRM);

}

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency of
700 MHz, a power level of −2.5 dBm, and a deviation of 20 kHz. Before running the program:

• Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.

• Set the modulation signal source for the desired FM characteristics.

Start Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex5.cpp.

//**

// PROGRAM FILE NAME:visaex5.cpp

//

// PROGRAM DESCRIPTION:This example sets the signal generator FM source to External 2,

// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power level

// to -2.5 dBm. The RF state is set to on.

//
52 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

 // Initialize VISA session

viStatus=viOpenDefaultRM(&defaultRM);

 // open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("Press any key to continue\n");

printf("\n");

getch();

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator
Chapter 2 53

Programming Examples
Generating a CW Signal Using VISA and C
viPrintf(vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM

viPrintf(vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling to AC

viPrintf(vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation to 20 kHz

viPrintf(vi, "FREQ 700 MHz\n"); // Sets carrier frequency to 700 MHz

viPrintf(vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to -2.5 dBm

viPrintf(vi, "FM:STAT ON\n"); // Turns on frequency modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

 // Print user information

printf("Power level : -2.5 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 700 MHZ\n");

printf("Deviation : 20 kHZ\n");

printf("EXT2 and AC coupling are selected\n");

printf("\n"); // Prints a carrage return

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Generating an Internal AC-Coupled FM Signal Using VISA and C
In this example the VISA library is used to generate an ac-coupled internal FM signal at a carrier frequency
of 900 MHz and a power level of −15 dBm. The FM rate will be 5 kHz and the peak deviation will be 100
kHz. Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the PSG Documentation CD-ROM as visaex6.cpp.

//**

// PROGRAM FILE NAME:visaex6.cpp

//

// PROGRAM DESCRIPION:This example generates an AC-coupled internal FM signal at a 900

// MHz carrier frequency and a power level of -15 dBm. The FM rate is 5 kHz and the peak

// deviation 100 kHz

//
54 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FM2:INT:FREQ 5 kHz\n"); // Sets EXT 2 source for FM
Chapter 2 55

Programming Examples
Generating a CW Signal Using VISA and C
viPrintf(vi, "FM2:DEV 100 kHz\n"); // Sets FM path 2 coupling to AC

viPrintf(vi, "FREQ 900 MHz\n"); // Sets carrier frequency to 700 MHz

viPrintf(vi, "POW -15 dBm\n"); // Sets the power level to -2.3 dBm

viPrintf(vi, "FM2:STAT ON\n"); // Turns on frequency modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

printf("\n"); // Prints a carriage return

 // Print user information

printf("Power level : -15 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 900 MHZ\n");

printf("Deviation : 100 kHZ\n");

printf("Internal modulation : 5 kHz\n");

printf("\n"); // Print a carrage return

// Close the sessions

viClose(vi);

viClose(defaultRM);

}

Generating a Step-Swept Signal Using VISA and C
In this example the VISA library is used to set the signal generator for a continuous step sweep on a defined
set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell time at each step is
set to 500 ms. The signal generator will then be set to local mode which allows the user to make adjustments
from the front panel. Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex7.cpp.

//**

// PROGRAM FILE NAME:visaex7.cpp

//

// PROGRAM DESCRIPTION:This example will program the signal generator to perform a step

// sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

//

//**
56 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

void main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// vi establishes instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

// Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){// If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*CLS\n"); // Clears the status byte register

viPrintf(vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq mode to list

viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type to step

viPrintf(vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency

viPrintf(vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:POIN 10\n"); // Sets number of steps (30 mHz/step)

viPrintf(vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500 ms/step

viPrintf(vi, "POW:AMPL -5 dBm\n"); // Sets the power level for -5 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output on
Chapter 2 57

Programming Examples
Generating a CW Signal Using VISA and C
viPrintf(vi, "INIT:CONT ON\n"); // Begins the step sweep operation

 // Print user information

printf("The signal generator is in step sweep mode. The frequency range
is\n");

printf("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz
step.\n");

printf("\n"); // Prints a carriage return/line feed

 viPrintf(vi, "OUTP:STAT OFF\n"); // Turns the RF output off

printf("Press the front panel Local key to return the\n");

printf("signal generoator to manual operation.\n");

 // Closes the sessions

printf("\n");

viClose(vi);

viClose(defaultRM);

}

Saving and Recalling States Using VISA and C
In this example, instrument settings are saved in the signal generator’s save register. These settings can then
be recalled separately; either from the keyboard or from the signal generator’s front panel. Start Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex8.cpp.

//**

// PROGRAM FILE NAME:visaex8.cpp

//

// PROGRAM DESCRIPTION:In this example, instrument settings are saved in the signal

// generator's registers and then recalled.

// Instrument settings can be recalled from the keyboard or, when the signal generator

// is put into Local control, from the front panel.

// This program will initialize the signal generator for an instrument state, store the

// state to register #1. An *RST command will reset the signal generator and a *RCL

// command will return it to the stored state. Following this remote operation the user

// will be instructed to place the signal generator in Local mode.

//
58 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

long lngDone = 0; // Operation complete flag

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

// Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){// If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viClear(vi); // Clears the signal generator

viPrintf(vi, "*CLS\n"); // Resets the status byte register

 // Print user information

printf("Programming example using the *SAV,*RCL SCPI commands\n");

printf("used to save and recall an instrument's state\n");

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FREQ 5 MHz\n"); // Sets sig gen frequency
Chapter 2 59

Programming Examples
Generating a CW Signal Using VISA and C
viPrintf(vi, "POW:ALC OFF\n"); // Turns ALC Off

viPrintf(vi, "POW:AMPL -3.2 dBm\n"); // Sets power for -3.2 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output On

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

viPrintf(vi, "*SAV 1\n"); // Saves sig gen state to register #1

 // Print user information

printf("The current signal generator operating state will be saved\n");

printf("to Register #1. Observe the state then press Enter\n");

printf("\n"); // Prints new line character

getch(); // Wait for user input

lngDone=0; // Resets the operation complete flag

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user infromation

printf("The instrument is now in it's Reset operating state. Press the\n");

printf("Enter key to return the signal generator to the Register #1
state\n");

printf("\n"); // Prints new line character

getch(); // Waits for user input

lngDone=0; // Reset the operation complete flag

viPrintf(vi, "*RCL 1\n"); // Recalls stored register #1 state

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user information

printf("The signal generator has been returned to it's Register #1
state\n");

printf("Press Enter to continue\n");

printf("\n"); // Prints new line character
60 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
getch(); // Waits for user input

lngDone=0; // Reset the operation complete flag

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user information

printf("Press Local on instrument front panel to return to manual mode\n");

printf("\n"); // Prints new line character

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Reading the Data Questionable Status Register Using VISA and C
In this example, the signal generator’s data questionable status register is read. You will be asked to set up
the signal generator for error generating conditions. The data questionable status register will be read and the
program will notify the user of the error condition that the setup caused. Follow the user prompts presented
when the program runs. Start Microsoft Visual C++ 6.0, add the required files, and enter the following code
into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as visaex9.cpp.

//***

// PROGRAM NAME:visaex9.cpp

//

// PROGRAM DESCRIPTION:In this example, the data questionable status register is read.

// The data questionable status register is enabled to read an unleveled condition.

// The signal generator is then set up for an unleveled condition and the data

// questionable status register read. The results are then displayed to the user.

// The status questionable register is then setup to monitor a modulation error condition.

// The signal generator is set up for a modulation error condition and the data

// questionable status register is read.

// The results are displayed to the active window.

//
Chapter 2 61

Programming Examples
Generating a CW Signal Using VISA and C
//***

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi;// Declares a variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

// for GPIB verifications

int num=0;// Declares a variable for switch statements

char rdBuffer[256]={0}; // Declare a variable for response data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viClear(vi);// Clears the signal generator

// Prints user information

printf("Programming example to demonstrate reading the signal generator's
Status Byte\n");

printf("\n");
62 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
printf("Manually set up the sig gen for an unleveled output condition:\n");

printf("* Set signal generator output amplitude to +20 dBm\n");

printf("* Set frequency to maximum value\n");

printf("* Turn On signal generator's RF Output\n");

printf("* Check signal generator's display for the UNLEVEL annuniator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); // Waits for keyboard user input

viPrintf(vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data Questionable

 // Power Condition Register Bits

// Bits '0' and '1'

viPrintf(vi, "STAT:QUES:POW:COND?\n"); // Querys the register for any

// set bits

viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

 // set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data to

 // numeric

switch (num) // Based on the decimal value

{

case 1:

printf("Signal Generator Reverse Power Protection
Tripped\n");

printf("/n");

break;

case 2:

printf("Signal Generator Power is Unleveled\n");

printf("\n");

break;

default:

printf("No Power Unleveled condition detected\n");
Chapter 2 63

Programming Examples
Generating a CW Signal Using VISA and C
printf("\n");

}

viClear(vi); // Clears the signal generator

 // Prints user information

printf("--\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output condition:\n");

printf("\n");

printf("* Select AM modulation\n");

printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

printf("* Turn On the modulation.\n");

printf("* Do not connect any source to the input\n");

printf("* Check signal generator's display for the EXT1 LO annunciator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); // Waits for keyboard user input

viPrintf(vi, "STAT:QUES:MOD:ENAB 16\n"); // Enables the Data Questionable

 // Modulation Condition Register

// bits '0','1','2','3' and '4'

 viPrintf(vi, "STAT:QUES:MOD:COND?\n"); // Querys the register for any

// set bits

 viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

// set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data to numeric

switch (num) // Based on the decimal value

{

case 1:

printf("Signal Generator Modulation 1 Undermod\n");

printf("\n");

break;
64 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
case 2:

printf("Signal Generator Modulation 1 Overmod\n");

printf("\n");

break;

case 4:

printf("Signal Generator Modulation 2 Undermod\n");

printf("\n");

break;

case 8:

printf("Signal Generator Modulation 2 Overmod\n");

printf("\n");

break;

case 16:

printf("Signal Generator Modulation Uncalibrated\n");

printf("\n");

break;

default:

printf("No Problems with Modulation\n");

printf("\n");

}

// Close the sessions

viClose(vi);

viClose(defaultRM);

}

Chapter 2 65

Programming Examples
Generating a CW Signal Using VISA and C
Reading the Service Request Interrupt (SRQ) Using VISA and C
This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the computer can
attend to other tasks while the signal generator is busy performing a function or operation. When the signal
generator finishes it’s operation, or detects a failure, then a Service Request can be generated. The computer
will respond to the SRQ and, depending on the code, can perform some other operation or notify the user of
failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in progress,
prints out a series of asterisks. When the step sweep operation is complete, an SRQ is generated and the
printing ceases.

Start Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file. This example is available on the PSG Documentation CD-ROM as visaex10.cpp.

//**

//

// PROGRAM FILE NAME:visaex10.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of a Service Request(SRQ)

// interupt. The program sets up conditions to enable the SRQ and then sets the signal

// generator for a step mode sweep. The program will enter a printing loop which prints

// an * character and ends when the sweep has completed and an SRQ received.

//

//**

#include "visa.h"

#include <stdio.h>

#include "StdAfx.h"

#include "windows.h"

#include <conio.h>

#define MAX_CNT 1024

int sweep=1; // End of sweeep flag

66 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
/* Prototypes */

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr);

int main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of memory data

viStatus=viOpenDefaultRM(&defaultRM);// Initialize VISA session

if(viStatus < VI_SUCCESS){// If problems, then prompt user

printf("ERROR initializing VISA... exiting\n");

printf("\n");

return -1;}

 // Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems then prompt user

printf("ERROR: Could not open communication with
instrument\n");

printf("\n");

return -1;}

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets signal generator

 // Print program header and information

printf("** End of Sweep Service Request **\n");

printf("\n");

printf("The signal generator will be set up for a step sweep mode
operation.\n");
Chapter 2 67

Programming Examples
Generating a CW Signal Using VISA and C
printf("An ’*’ will be printed while the instrument is sweeping. The end of
 \n");

printf("sweep will be indicated by an SRQ on the GPIB and the program will
end.\n");

printf("\n");

printf("Press Enter to continue\n");

printf("\n");

getch();

viPrintf(vi, "*CLS\n");// Clears signal generator status byte

viPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status Group // Negative
Transition Filter to indicate a // negative transition in Bit 3 (Sweeping)

// which will set a corresponding event in // the Operation Event Register. This occurs
// the end of a sweep.

viPrintf(vi, "STAT:OPER:PTR 0\n");// Sets the Operation Status Group // Positive
Transition Filter so that no

// positive transition on Bit 3 affects the // Operation Event Register. The positive //
transition occurs at the start of a sweep.

viPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3 // to report
the event to Status Byte // Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Summary Bit 7

// The next line of code indicates the // function to call on an event

viStatus = viInstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt, rdBuffer);

// The next line of code enables the // detection of an event

viStatus = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

viPrintf(vi, "FREQ:MODE LIST\n");// Sets frequency mode to list

viPrintf(vi, "LIST:TYPE STEP\n");// Sets sweep to step

viPrintf(vi, "LIST:TRIG:SOUR IMM\n");// Immediately trigger the sweep

viPrintf(vi, "LIST:MODE AUTO\n");// Sets mode for the list sweep

viPrintf(vi, "FREQ:STAR 40 MHZ\n"); // Start frequency set to 40 MHz

viPrintf(vi, "FREQ:STOP 900 MHZ\n");// Stop frequency set to 900 MHz

viPrintf(vi, "SWE:POIN 25\n");// Set number of points for the step sweep

viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

viPrintf(vi, "INIT:CONT OFF\n");// Set up for single sweep
68 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
viPrintf(vi, "TRIG:SOUR IMM\n");// Triggers the sweep

viPrintf(vi, "INIT\n"); // Takes a single sweep

printf("\n");

// While the instrument is sweeping have the

// program busy with printing to the display.

// The Sleep function, defined in the header

// file windows.h, will pause the program

// operation for .5 seconds

while (sweep==1){

printf("*");

Sleep(500);}

printf("\n");

// The following lines of code will stop the

// events and close down the session

viStatus = viDisableEvent(vi, VI_ALL_ENABLED_EVENTS,VI_ALL_MECH);

viStatus = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt,
rdBuffer);

viStatus = viClose(vi);

viStatus = viClose(defaultRM);

return 0;

}

// The following function is called when an SRQ event occurs. Code specific to your

// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr)

{

ViStatus status;

ViUInt16 stb;
Chapter 2 69

Programming Examples
Generating a CW Signal Using VISA and C
 status = viReadSTB(vi, &stb);// Reads the Status Byte

sweep=0;// Sets the flag to stop the ’*’ printing

printf("\n");// Print user information

printf("An SRQ, indicating end of sweep has occurred\n");

viClose(event);// Closes the event

return VI_SUCCESS;

}

70 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
Using 8757D Pass-Thru Commands
Pass-thru commands enable you to temporarily interrupt ramp sweep system interaction so that you can send
operating instructions to the PSG. This section provides setup information and an example program for using
pass-thru commands in a ramp sweep system.

Equipment Setup

To send pass-thru commands, set up the equipment as shown in Figure 2-1. Notice that the GPIB cable from
the computer is connected to the GPIB interface bus of the 8757D.

Figure 2-1
Chapter 2 71

Programming Examples
Generating a CW Signal Using VISA and C
GPIB Address Assignments

Table 2-1 describes how GPIB addresses should be assigned for sending pass-thru commands. These are the
same addresses used in Example 2-1.

Example Pass-Thru Program

Example 2-1 on page 73 is a sample Agilent BASIC program that switches the 8757D to pass-thru mode,
allowing you to send operating commands to the PSG. After the program runs, control is given back to the
network analyzer. The following describes the command lines used in the program.

Line 30 PT is set to equal the source address. C1 is added, but not needed, to specify the channel.

Lines 40, 90 The END statement is required to complete the language transition.

Lines 50, 100 A WAIT statement is recommended after a language change to allow all instrument
changes to be completed before the next command.

Lines 70, 80 This is added to ensure that the instrument has completed all operations before
switching languages.

Line 110 This takes the network analyzer out of pass-thru command mode, and puts it back in
control. Any analyzer command can now be entered.

Table 2-1

Instrument GPIB
Address

Key Presses/Description

PSG 19 Press Utility > GPIB/RS-232 LAN > GPIB Address > 19 > Enter.

8757D 16 Press LOCAL > 8757 > 16 > Enter.

8757D
(Sweeper)

19 This address must match the PSG.
Press LOCAL > SWEEPER > 19 > Enter.

Pass Thru 17 The pass thru address is automatically selected by the 8757D by
inverting the last bit of the 8757D address. Refer to the 8757D
documentation for more information. Verify that no other instrument is
using this address on the GPIB bus.
72 Chapter 2

Programming Examples
Generating a CW Signal Using VISA and C
Example 2-1 Pass-Thru Program

10 ABORT 7

20 CLEAR 716

30 OUTPUT 716;"PT19;C1"

40 OUTPUT 717;"SYST:LANG SCPI";END

50 WAIT .5

60 OUTPUT 717;"POW:STAT OFF"

70 OUTPUT 717;"*OPC?"

80 ENTER 717; Reply

90 OUTPUT 717;"SYST:LANG COMP";END

100 WAIT .5

110 OUTPUT 716;"C2"

120 END
Chapter 2 73

Programming Examples
LAN Programming Examples
LAN Programming Examples
• VXI-11 LAN Programming

• “Setting Parameters and Sending Queries Using Sockets and C” on page 78

• “Setting the Power Level and Sending Queries Using PERL” on page 104

• “Generating a CW Signal Using Java” on page 106

This section describes methods of communicating with the signal generator over the LAN interface. The
VXI-11 protocol is described and program examples using C, Java, and PERL over socket LAN are shown.
Telnet and FTP also use the LAN interface for instrument communication. For details on using FTP and
TELNET refer to “Using FTP” on page 22 and “Using Telnet LAN” on page 18 of this guide.

Before Using the Examples
To use these programming examples you must change references to the IP address and hostname to match
the IP address and hostname of your signal generator.

VXI-11 LAN Programming
The signal generator supports the VXI-11 protocol for instrument control using the LAN interface. The
VXI-11 protocol is an industry standard, instrument communication protocol, described in the VXI-11
standard. Refer to the VXIbus Consortium.Inc website at www.vxi.org/freepdfdownloads for more
information.

NOTE It is recommended that the VXI-11 protocol be used for instrument communication over the
LAN interface.

The VXI-11 protocol uses Open Network Computing/Remote Procedure Calls (ONC/RPC) running over
TCP/IP. It is intended to provide GPIB capabilities such as SRQ (Service Request), status byte reading, and
DCAS (Device Clear State) over a LAN interface. The VXI-11 standard allows IEEE 488.2 messages and
IEEE 488.1 instrument control messages.

Configuring for VXI-11

The Agilent I/O library I/O Config program can setup the computer/signal generator interface for TCPIP
LAN for the LAN Client using the VXI-11 protocol. Download the latest version of the Agilent I/O library
from the Agilent website. Refer to the Agilent I/O library user manual, documentation, and Help menu for
information on running the I/O Config program and configuring the LAN interface.
74 Chapter 2

Programming Examples
LAN Programming Examples
Figure 2-2 IO Config Form

VXI-11 Programming

The GPIB programming examples, listed in the GPIB Programming Examples section and using the VISA
Library, can be easily changed to use the LAN VXI-11 protocol by changing the address string. For
example, change the “GPIB::19::INSTR” address string to “TCPIP::hostname::INSTR” where
hostname is the IP address or hostname of the signal generator. The VXI-11 protocol has the same
capabilities as GPIB.

Sockets LAN Programming using C
The program listing shown in “Setting Parameters and Sending Queries Using Sockets and C” on page 78
consists of two files; lanio.c and getopt.c. The lanio.c file has two main functions; int main() and an int
main1().

NOTE The sockets protocol does not provide GPIB capabilities such as SRQ (Service Request)
and status byte reading. It is recommended that the VXI-11 protocol be used for instrument
communication over the LAN interface.

The int main() function allows communication with the signal generator interactively from the command
line. The program reads the signal generator's hostname from the command line, followed by the SCPI
command. It then opens a socket to the signal generator, using port 5025, and sends the command. If the
Chapter 2 75

Programming Examples
LAN Programming Examples
command appears to be a query, the program queries the signal generator for a response, and prints the
response.

The int main1(), after renaming to int main(), will output a sequence of commands to the signal generator.
You can use the format as a template and then add your own code.

This program is available on the PSG Documentation CD-ROM as lanio.c

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only difference is
the openSocket() routine, which uses a few network library routines to create the TCP/IP network
connection. Once this connection is created, the standard fread() and fwrite() routines are used for network
communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, /users/mydir/.

2. At the UNIX prompt in your home directory type: cc -Aa -O -o lanio lanio.c

3. At the UNIX prompt in your home directory type: ./lanio xxxxx “*IDN?” where xxxxx is the
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

The int main1() function will output a sequence of commands in a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Rename the lanio.c int main1() to int main() and the original int main() to int main1().

2. In the main(), openSocket() function, change the “your hostname here” string to the hostname of
the signal generator you want to control.

3. Resave the lanio.c program

4. At the UNIX prompt type: cc -Aa -O -o lanio lanio.c

5. At the UNIX prompt type: ./lanio

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX display
will show a display similar to the following:

unix machine: /users/mydir
$./lanio
ID: Agilent Technologies, E8254A, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000
76 Chapter 2

Programming Examples
LAN Programming Examples
Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on sockets.
The following steps outline the process for running the interactive program in the Microsoft Visual C++ 6.0
environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of the
Visual C++ project.

2. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

3. Click Start, click Programs, then click Command Prompt.

4. At the command prompt, cd to the directory containing the lanio.cpp file and then to the Debug folder.
For example C:\SocketIO\Lanio\Debug

5. Type in lanio xxxxx “*IDN?” at the command prompt. For example:
C:\SocketIO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by line
format from the command prompt.

6. Type exit at the command prompt to quit the program.

The int main1() function will output a sequence of commands in a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the main1() function of the
lanio.c program

2. Rename the lanio.cpp int main1() function to int main() and the original int main() function
to int main1().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-3.
Chapter 2 77

Programming Examples
LAN Programming Examples
Figure 2-3 Program Output Screen

Setting Parameters and Sending Queries Using Sockets and C

The following programming examples are available on the PSG Documentation CD-ROM as lanio.c and
getopt.c.

 /***

 * $Header: lanio.c 04/24/01

 * $Revision: 1.1 $

 * $Date: 04/24/01

 * PROGRAM NAME: lanio.c

 *

 * $Description: Functions to talk to an Agilent signal generator

 * via TCP/IP. Uses command-line arguments.

 *

 * A TCP/IP connection to port 7777 is established and

 * the resultant file descriptor is used to "talk" to the

 * instrument using regular socket I/O mechanisms. $
78 Chapter 2

Programming Examples
LAN Programming Examples
 *

 *

 *

 * Examples:

 *

 * Query the signal generator frequency:

 * lanio xx.xxx.xx.x 'FREQ?'

 *

 * Query the signal generator power level:

 * lanio xx.xxx.xx.x 'POW?'

 *

 * Check for errors (gets one error):

 * lanio xx.xxx.xx.x 'syst:err?'

 *

 * Send a list of commands from a file, and number them:

 * cat scpi_cmds | lanio -n xx.xxx.xx.x

 *

 **

 *

 * This program compiles and runs under

 * - HP-UX 10.20 (UNIX), using HP cc or gcc:

 * + cc -Aa -O -o lanio lanio.c

 * + gcc -Wall -O -o lanio lanio.c

 *

 * - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

 * - Windows NT 3.51, using Microsoft Visual C++ 4.0

 * + Be sure to add WSOCK32.LIB to your list of libraries!

 * + Compile both lanio.c and getopt.c

 * + Consider re-naming the files to lanio.cpp and getopt.cpp

 *

 * Considerations:

 * - On UNIX systems, file I/O can be used on network sockets.
Chapter 2 79

Programming Examples
LAN Programming Examples
 * This makes programming very convenient, since routines like

 * getc(), fgets(), fscanf() and fprintf() can be used. These

 * routines typically use the lower level read() and write() calls.

 *

 * - In the Windows environment, file operations such as read(), write(),

 * and close() cannot be assumed to work correctly when applied to

 * sockets. Instead, the functions send() and recv() MUST be used.

 ***/

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */

define WINSOCK

#endif

#ifndef WINSOCK

ifndef _HPUX_SOURCE

define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */

#include <string.h> /* for memcpy and memset */

#include <stdlib.h> /* for malloc(), atol() */

#include <errno.h> /* for strerror */

#ifdef WINSOCK

#include <windows.h>

ifndef _WINSOCKAPI_

include <winsock.h> // BSD-style socket functions
80 Chapter 2

Programming Examples
LAN Programming Examples
endif

#else /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/

include <netinet/in.h> /* for sockaddr_in */

include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)

define INVALID_SOCKET (-1)

 typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK

 /* Declared in getopt.c. See example programs disk. */

 extern char *optarg;

 extern int optind;

 extern int getopt(int argc, char * const argv[], const char* optstring);

#else

include <unistd.h> /* for getopt(3C) */

#endif

#define COMMAND_ERROR (1)

#define NO_CMD_ERROR (0)

#define SCPI_PORT 7777

#define INPUT_BUF_SIZE (64*1024)
Chapter 2 81

Programming Examples
LAN Programming Examples
/**

 * Display usage

 **/

static void usage(char *basename)

{

 fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]\n", basename);

 fprintf(stderr," %s [-nqu] <hostname> < stdin\n", basename);

 fprintf(stderr," -n, number output lines\n");

 fprintf(stderr," -q, quiet; do NOT echo lines\n");

 fprintf(stderr," -e, show messages in error queue when done\n");

}

#ifdef WINSOCK

int init_winsock(void)

{

 WORD wVersionRequested;

 WSADATA wsaData;

 int err;

 wVersionRequested = MAKEWORD(1, 1);

 wVersionRequested = MAKEWORD(2, 0);

 err = WSAStartup(wVersionRequested, &wsaData);

 if (err != 0) {

 /* Tell the user that we couldn't find a useable */

 /* winsock.dll. */

 fprintf(stderr, "Cannot initialize Winsock 1.1.\n");

 return -1;

 }

 return 0;
82 Chapter 2

Programming Examples
LAN Programming Examples
}

int close_winsock(void)

{

 WSACleanup();

 return 0;

}

#endif /* WINSOCK */

/***

 *

 > $Function: openSocket$

 *

 * $Description: open a TCP/IP socket connection to the instrument $

 *

 * $Parameters: $

 * (const char *) hostname Network name of instrument.

 * This can be in dotted decimal notation.

 * (int) portNumber The TCP/IP port to talk to.

 * Use 7777 for the SCPI port.

 *

 * $Return: (int) A file descriptor similar to open(1).$

 *

 * $Errors: returns -1 if anything goes wrong $

 *

 ***/

SOCKET openSocket(const char *hostname, int portNumber)

{

 struct hostent *hostPtr;

 struct sockaddr_in peeraddr_in;
Chapter 2 83

Programming Examples
LAN Programming Examples
 SOCKET s;

 memset(&peeraddr_in, 0, sizeof(struct sockaddr_in));

 /***/

 /* map the desired host name to internal form. */

 /***/

 hostPtr = gethostbyname(hostname);

 if (hostPtr == NULL)

 {

 fprintf(stderr,"unable to resolve hostname '%s'\n", hostname);

 return INVALID_SOCKET;

 }

 /*******************/

 /* create a socket */

 /*******************/

 s = socket(AF_INET, SOCK_STREAM, 0);

 if (s == INVALID_SOCKET)

 {

 fprintf(stderr,"unable to create socket to '%s': %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }

 memcpy(&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);

 peeraddr_in.sin_family = AF_INET;

 peeraddr_in.sin_port = htons((unsigned short)portNumber);

 if (connect(s, (const struct sockaddr*)&peeraddr_in,

 sizeof(struct sockaddr_in)) == SOCKET_ERROR)
84 Chapter 2

Programming Examples
LAN Programming Examples
 {

 fprintf(stderr,"unable to create socket to '%s': %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }

 return s;

}

/***

 *

 > $Function: commandInstrument$

 *

 * $Description: send a SCPI command to the instrument.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * $Return: (char *) a pointer to the result string.

 *

 * $Errors: returns 0 if send fails $

 *

 ***/

int commandInstrument(SOCKET sock,

 const char *command)

{

 int count;

 /* fprintf(stderr, "Sending \"%s\".\n", command); */

 if (strchr(command, '\n') == NULL) {
Chapter 2 85

Programming Examples
LAN Programming Examples
 fprintf(stderr, "Warning: missing newline on command %s.\n", command);

 }

 count = send(sock, command, strlen(command), 0);

 if (count == SOCKET_ERROR) {

 return COMMAND_ERROR;

 }

 return NO_CMD_ERROR;

}

/**

 * recv_line(): similar to fgets(), but uses recv()

 **/

char * recv_line(SOCKET sock, char * result, int maxLength)

{

#ifdef WINSOCK

 int cur_length = 0;

 int count;

 char * ptr = result;

 int err = 1;

 while (cur_length < maxLength) {

 /* Get a byte into ptr */

 count = recv(sock, ptr, 1, 0);

 /* If no chars to read, stop. */

 if (count < 1) {

 break;

 }

 cur_length += count;
86 Chapter 2

Programming Examples
LAN Programming Examples
 /* If we hit a newline, stop. */

 if (*ptr == '\n') {

 ptr++;

 err = 0;

 break;

 }

 ptr++;

 }

 *ptr = '\0';

 if (err) {

 return NULL;

 } else {

 return result;

 }

#else

 /***

 * Simpler UNIX version, using file I/O. recv() version works too.

 * This demonstrates how to use file I/O on sockets, in UNIX.

 ***/

 FILE * instFile;

 instFile = fdopen(sock, "r+");

 if (instFile == NULL)

 {

 fprintf(stderr, "Unable to create FILE * structure : %s\n",

 strerror(errno));

 exit(2);

 }

 return fgets(result, maxLength, instFile);
Chapter 2 87

Programming Examples
LAN Programming Examples
#endif

}

/***

 *

 > $Function: queryInstrument$

 *

 * $Description: send a SCPI command to the instrument, return a response.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * (char *result) where to put the result.

 * (size_t) maxLength maximum size of result array in bytes.

 *

 * $Return: (long) The number of bytes in result buffer.

 *

 * $Errors: returns 0 if anything goes wrong. $

 *

 ***/

long queryInstrument(SOCKET sock,

 const char *command, char *result, size_t maxLength)

{

 long ch;

 char tmp_buf[8];

 long resultBytes = 0;

 int command_err;

 int count;

 /***
88 Chapter 2

Programming Examples
LAN Programming Examples
 * Send command to signal generator

 ***/

 command_err = commandInstrument(sock, command);

 if (command_err) return COMMAND_ERROR;

 /***

 * Read response from signal generator

 **/

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF) || (ch == '\n'))

 {

 result = '\0'; / null terminate result for ascii */

 return 0;

 }

 /* use a do-while so we can break out */

 do

 {

 if (ch == '#')

 {

 /* binary data encountered - figure out what it is */

 long numDigits;

 long numBytes = 0;

 /* char length[10]; */

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF)) break; /* End of file */
Chapter 2 89

Programming Examples
LAN Programming Examples
 if (ch < '0' || ch > '9') break; /* unexpected char */

 numDigits = ch - '0';

 if (numDigits)

 {

 /* read numDigits bytes into result string. */

 count = recv(sock, result, (int)numDigits, 0);

 result[count] = 0; /* null terminate */

 numBytes = atol(result);

 }

 if (numBytes)

 {

 resultBytes = 0;

 /* Loop until we get all the bytes we requested. */

 /* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */

 do {

 int rcount;

 rcount = recv(sock, result, (int)numBytes, 0);

 resultBytes += rcount;

 result += rcount; /* Advance pointer */

 } while (resultBytes < numBytes);

 /**

 * For LAN dumps, there is always an extra trailing newline

 * Since there is no EOI line. For ASCII dumps this is

 * great but for binary dumps, it is not needed.

 ***/

 if (resultBytes == numBytes)

 {

 char junk;

 count = recv(sock, &junk, 1, 0);
90 Chapter 2

Programming Examples
LAN Programming Examples
 }

 }

 else

 {

 /* indefinite block ... dump til we can an extra line feed */

 do

 {

 if (recv_line(sock, result, maxLength) == NULL) break;

 if (strlen(result)==1 && *result == '\n') break;

 resultBytes += strlen(result);

 result += strlen(result);

 } while (1);

 }

 }

 else

 {

 /* ASCII response (not a binary block) */

 *result = (char)ch;

 if (recv_line(sock, result+1, maxLength-1) == NULL) return 0;

 /* REMOVE trailing newline, if present. And terminate string. */

 resultBytes = strlen(result);

 if (result[resultBytes-1] == '\n') resultBytes -= 1;

 result[resultBytes] = '\0';

 }

 } while (0);

 return resultBytes;

}

Chapter 2 91

Programming Examples
LAN Programming Examples
/***

 *

 > $Function: showErrors$

 *

 * $Description: Query the SCPI error queue, until empty. Print results. $

 *

 * $Return: (void)

 *

 ***/

void showErrors(SOCKET sock)

{

 const char * command = "SYST:ERR?\n";

 char result_str[256];

 do {

 queryInstrument(sock, command, result_str, sizeof(result_str)-1);

 /**

 * Typical result_str:

 * -221,"Settings conflict; Frequency span reduced."

 * +0,"No error"

 * Don't bother decoding.

 **/

 if (strncmp(result_str, "+0,", 3) == 0) {

 /* Matched +0,"No error" */

 break;

 }

 puts(result_str);

 } while (1);

}

92 Chapter 2

Programming Examples
LAN Programming Examples
/***

 *

 > $Function: isQuery$

 *

 * $Description: Test current SCPI command to see if it a query. $

 *

 * $Return: (unsigned char) . . . non-zero if command is a query. 0 if not.

 *

 ***/

unsigned char isQuery(char* cmd)

{

 unsigned char q = 0 ;

 char *query ;

 /***/

 /* if the command has a '?' in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /* Actually, we must be a more specific so that */

 /* marker value querys are treated as commands. */

 /* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */

 /***/

 if ((query = strchr(cmd,'?')) != NULL)

 {

 /* Make sure we don't have a marker value query, or

 * any command with a '?' followed by a ')' character.

 * This kind of command is not a query from our point of view.

 * The signal generator does the query internally, and uses the result.

 */

 query++ ; /* bump past '?' */

 while (*query)
Chapter 2 93

Programming Examples
LAN Programming Examples
 {

 if (*query == ' ') /* attempt to ignore white spc */

 query++ ;

 else break ;

 }

 if (*query != ')')

 {

 q = 1 ;

 }

 }

 return q ;

}

/***

 *

 > $Function: main$

 *

 * $Description: Read command line arguments, and talk to signal generator.

 Send query results to stdout. $

 *

 * $Return: (int) . . . non-zero if an error occurs

 *

 ***/

int main(int argc, char *argv[])

{

 SOCKET instSock;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 char *basename;

 int chr;
94 Chapter 2

Programming Examples
LAN Programming Examples
 char command[1024];

 char *destination;

 unsigned char quiet = 0;

 unsigned char show_errs = 0;

 int number = 0;

 basename = strrchr(argv[0], '/');

 if (basename != NULL)

 basename++ ;

 else

 basename = argv[0];

 while ((chr = getopt(argc,argv,"qune")) != EOF)

 switch (chr)

 {

 case 'q': quiet = 1; break;

 case 'n': number = 1; break ;

 case 'e': show_errs = 1; break ;

 case 'u':

 case '?': usage(basename); exit(1) ;

 }

 /* now look for hostname and optional <command>*/

 if (optind < argc)

 {

 destination = argv[optind++] ;

 strcpy(command, "");

 if (optind < argc)

 {

 while (optind < argc) {

 /* <hostname> <command> provided; only one command string */

 strcat(command, argv[optind++]);
Chapter 2 95

Programming Examples
LAN Programming Examples
 if (optind < argc) {

 strcat(command, " ");

 } else {

 strcat(command, "\n");

 }

 }

 }

 else

 {

 /*Only <hostname> provided; input on <stdin> */

 strcpy(command, "");

 if (optind > argc)

 {

 usage(basename);

 exit(1);

 }

 }

 }

 else

 {

 /* no hostname! */

 usage(basename);

 exit(1);

 }

 /**

 /* open a socket connection to the instrument

 /**/

#ifdef WINSOCK

 if (init_winsock() != 0) {
96 Chapter 2

Programming Examples
LAN Programming Examples
 exit(1);

 }

#endif /* WINSOCK */

 instSock = openSocket(destination, SCPI_PORT);

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 if (strlen(command) > 0)

 {

 /***

 /* if the command has a '?' in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /***/

 if (isQuery(command))

 {

 long bufBytes;

 bufBytes = queryInstrument(instSock, command,

 charBuf, INPUT_BUF_SIZE);

 if (!quiet)

 {

 fwrite(charBuf, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else

 {

 commandInstrument(instSock, command);
Chapter 2 97

Programming Examples
LAN Programming Examples
 }

 }

 else

 {

 /* read a line from <stdin> */

 while (gets(charBuf) != NULL)

 {

 if (!strlen(charBuf))

 continue ;

 if (*charBuf == '#' || *charBuf == '!')

 continue ;

 strcat(charBuf, "\n");

 if (!quiet)

 {

 if (number)

 {

 char num[10];

 sprintf(num,"%d: ",number);

 fwrite(num, strlen(num), 1, stdout);

 }

 fwrite(charBuf, strlen(charBuf), 1, stdout) ;

 fflush(stdout);

 }

 if (isQuery(charBuf))

 {

 long bufBytes;

 /* Put the query response into the same buffer as the*/
98 Chapter 2

Programming Examples
LAN Programming Examples
 /* command string appended after the null terminator.*/

 bufBytes = queryInstrument(instSock, charBuf,

 charBuf + strlen(charBuf) + 1,

 INPUT_BUF_SIZE -strlen(charBuf));

 if (!quiet)

 {

 fwrite(" ", 2, 1, stdout) ;

 fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else

 {

 commandInstrument(instSock, charBuf);

 }

 if (number) number++;

 }

 }

 if (show_errs) {

 showErrors(instSock);

 }

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else

 close(instSock);

#endif /* WINSOCK */
Chapter 2 99

Programming Examples
LAN Programming Examples
 return 0;

}

/* End of lanio.cpp *

/**/

/* $Function: main1$ */

/* $Description: Output a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */

/* */

/* $Return: (int) . . . non-zero if an error occurs */

/* */

/**/

/* Rename this int main1() function to int main(). Re-compile and the */

/* execute the program */

/**/

int main1()

{

SOCKET instSock;

long bufBytes;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 /***/

 /* open a socket connection to the instrument*/

 /***/

#ifdef WINSOCK
100 Chapter 2

Programming Examples
LAN Programming Examples
 if (init_winsock() != 0) {

 exit(1);

 }

#endif /* WINSOCK */

 instSock = openSocket("xxxxxx", SCPI_PORT); /* Put your hostname here */

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 bufBytes = queryInstrument(instSock, "*IDN?\n", charBuf, INPUT_BUF_SIZE);

 printf("ID: %s\n",charBuf);

 commandInstrument(instSock, "FREQ 2.5 GHz\n");

 printf("\n");

 bufBytes = queryInstrument(instSock, "FREQ:CW?\n", charBuf, INPUT_BUF_SIZE);

 printf("Frequency: %s\n",charBuf);

 commandInstrument(instSock, "POW:AMPL -5 dBm\n");

 bufBytes = queryInstrument(instSock, "POW:AMPL?\n", charBuf, INPUT_BUF_SIZE);

 printf("Power Level: %s\n",charBuf);

 printf("\n");

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else

 close(instSock);

#endif /* WINSOCK */

 return 0;
Chapter 2 101

Programming Examples
LAN Programming Examples
}

/***

 getopt(3C) getopt(3C)

PROGRAM FILE NAME: getopt.c

getopt - get option letter from argument vector

 SYNOPSIS

 int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

 extern int optind, opterr, optopt;

 PRORGAM DESCRIPTION:

 getopt returns the next option letter in argv (starting from argv[1])

 that matches a letter in optstring. optstring is a string of

 recognized option letters; if a letter is followed by a colon, the

 option is expected to have an argument that may or may not be

 separated from it by white space. optarg is set to point to the start

 of the option argument on return from getopt.

 getopt places in optind the argv index of the next argument to be

 processed. The external variable optind is initialized to 1 before

 the first call to the function getopt.

 When all options have been processed (i.e., up to the first non-option

 argument), getopt returns EOF. The special option -- can be used to

 delimit the end of the options; EOF is returned, and -- is skipped.

 ***/
102 Chapter 2

Programming Examples
LAN Programming Examples
#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */

int optind = 0; /* Global argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

 char c;

 char *posn;

 optarg = NULL;

 if (scan == NULL || *scan == '\0') {

 if (optind == 0)

 optind++;

 if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')

 return(EOF);

 if (strcmp(argv[optind], "--")==0) {

 optind++;

 return(EOF);

 }

 scan = argv[optind]+1;

 optind++;

 }

 c = *scan++;

 posn = strchr(optstring, c); /* DDP */
Chapter 2 103

Programming Examples
LAN Programming Examples

 if (posn == NULL || c == ':') {

 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);

 return('?');

 }

 posn++;

 if (*posn == ':') {

 if (*scan != '\0') {

 optarg = scan;

 scan = NULL;

 } else {

 optarg = argv[optind];

 optind++;

 }

 }

 return(c);

}

Sockets LAN Programming Using PERL
This example uses PERL script to control the signal generator over the sockets LAN interface. The signal
generator power level is set to - 5 dBm, queried for operation complete and then queried for it’s identify
string. This example was developed using PERL version 5.6.0 and requires a PERL version with the
IO::Socket library. This example is available on the PSG Documentation CD-ROM as perl.txt.

1. In the code below, enter your signal generator’s hostname in place of the xxxxx in the code line: my
$instrumentName= “xxxxx”; .

2. Save the code using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

#!/usr/bin/perl

PROGRAM NAME: perl.txt
104 Chapter 2

Programming Examples
LAN Programming Examples
Example of talking to the signal generator via SCPI-over-sockets

use IO::Socket;

Change to your instrument's name

my $instrumentName = "xxxxx";

Get socket

$sock = new IO::Socket::INET (PeerAddr => $instrumentName,

 PeerPort => 7777,

 Proto => 'tcp',

);

die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq

print "Setting frequency...\n";

print $sock "freq 1 GHz\n";

Wait for completion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

my $response = <$sock>;

chomp $response; # Removes newline from response

if ($response ne "1")

{

 die "Bad response to '*OPC?' from instrument!\n";

}

Send identification query

print $sock "*IDN?\n";

$response = <$sock>;

chomp $response;

print "Instrument ID: $response\n";
Chapter 2 105

Programming Examples
LAN Programming Examples
Sockets LAN Programming Using Java
In this example the Java program connects to the signal generator via sockets LAN. This program requires
Java version 1.1 or later be installed on your PC. To run the program perform the following steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For example,
String instrumentName = (your signal generator’s hostname).

2. Copy the program as ScpiSockTest.java and save it in a convenient directory on your computer.
For example save the file to the C:\jdk1.3.0_2\bin\javac directory.

3. Run the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

4. Compile the program. At the command prompt type: javac ScpiSockTest.java.
The directory path for the Java compiler must be specified. For example:
C:\>jdk1.3.0_2\bin\javac ScpiSockTest.java

5. Run the program by typing java ScpiSockTest at the command prompt.

6. Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the PSG Documentation CD-ROM as javaex.txt.

//**

// PROGRAM NAME: javaex.txt
// Sample java program to talk to the signal generator via SCPI-over-sockets

// This program requires Java version 1.1 or later.

// Save this code as ScpiSockTest.java

// Compile by typing: javac ScpiSockTest.java

// Run by typing: java ScpiSockTest

// The signal generator is set for 1 GHz and queried for its id string

//**

import java.io.*;

import java.net.*;

class ScpiSockTest

{

 public static void main(String[] args)

 {
106 Chapter 2

Programming Examples
LAN Programming Examples
 String instrumentName = "xxxxx"; // Put your hostname here

try

 {

 Socket t = new Socket(instrumentName,7777); // Connect to instrument

 // Setup read/write mechanism

 BufferedWriter out =

 new BufferedWriter(

 new OutputStreamWriter(t.getOutputStream()));

 BufferedReader in =

 new BufferedReader(

 new InputStreamReader(t.getInputStream()));

 System.out.println("Setting frequency to 1 GHz...");

 out.write("freq 1GHz\n"); // Sets frequency

 out.flush();

 System.out.println("Waiting for source to settle...");

 out.write("*opc?\n"); // Waits for completion

 out.flush();

 String opcResponse = in.readLine();

 if (!opcResponse.equals("1"))

{

 System.err.println("Invalid response to '*OPC?'!");

 System.exit(1);

}

 System.out.println("Retrieving instrument ID...");

 out.write("*idn?\n"); // Querys the id string

 out.flush();

 String idnResponse = in.readLine(); // Reads the id string

 // Prints the id string

 System.out.println("Instrument ID: " + idnResponse);

 }

 catch (IOException e)

{
Chapter 2 107

Programming Examples
LAN Programming Examples
 System.out.println("Error" + e);

 }

 }

}
108 Chapter 2

Programming Examples
RS-232 Programming Examples
RS-232 Programming Examples
• “Interface Check Using Agilent BASIC” on page 109

• “Interface Check Using VISA and C” on page 110

• “Queries Using Agilent BASIC” on page 112

• “Queries Using VISA and C” on page 113

Before Using the Examples
On the signal generator select the following settings:

• Baud Rate - 9600 must match computer’s baud rate

• Transmit Pace - None

• Receive Pace - None

• RTS/CTS - None

• RS-232 Echo - Off

Interface Check Using Agilent BASIC
This example program causes the signal generator to perform an instrument reset. The SCPI command *RST
will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is COM1
(Serial A on some computers). Refer to “Using RS-232” on page 25 for more information.

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset....’ message on the front panel
display. If there is no indication, check that the RS-232 cable is properly connected to the computer serial
port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was typed
incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to “If You Have
Problems” on page 7 for more help.

The following program example is available on the PSG Documentation CD-ROM as rs232ex1.txt.

10 !**

20 !

30 ! PROGRAM NAME: rs232ex1.txt

40 !
Chapter 2 109

Programming Examples
RS-232 Programming Examples
50 ! PROGRAM DESCRIPTION: This program verifies that the RS-232 connections and

60 ! interface are functional.

70 !

80 ! Connect the UNIX workstation to the signal generator using an RS-232 cable

90 !

100 !

110 ! Run Agilent BASIC, type in the following commands and then RUN the program

120 !

130 !

140 !**

150 !

160 INTEGER Num

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9,3;9600 ! Sets the baud rate to match the sig gen

190 STATUS 9,4;Stat ! Reads the value of register 4

200 Num=BINAND(Stat,7) ! Gets the AND value

210 CONTROL 9,4;Num ! Sets parity to NONE

220 OUTPUT 9;"*RST" ! Outputs reset to the sig gen

230 END ! End the program

Interface Check Using VISA and C
This program uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. In this example the COM2 port is used. The serial
port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the computer serial port you
are using. Start Microsoft Visual C++, add the required files, and enter the following code into the .cpp
source file.

The following program example is available on the PSG Documentation CD-ROM as rs232ex1.cpp.

//**

// PROGRAM NAME: rs232ex1.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to

// control the signal generator.

//
110 Chapter 2

Programming Examples
RS-232 Programming Examples
// Connect the computer to the signal generator using an RS-232 serial cable.

// The user is asked to set the signal generator for a 0 dBm power level

// A reset command *RST is sent to the signal generator via the RS-232

// interface and the power level will reset to the -135 dBm level.The default

// attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.

// These attributes can be changed using VISA functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

#include <conio.h>

void main ()

{

int baud=9600;// Set baud rate to 9600

printf("Manually set the signal generator power level to 0 dBm\n");

printf("\n");

printf("Press any key to continue\n");

getch();

printf("\n");

ViSession defaultRM, vi;// Declares a variable of type ViSession

// for instrument communication on COM 2 port

ViStatus viStatus = 0;

// Opens session to RS-232 device at serial port 2

viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &vi);

Chapter 2 111

Programming Examples
RS-232 Programming Examples
if(viStatus){// If operation fails, prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

// initialize device

viStatus=viEnableEvent(vi, VI_EVENT_IO_COMPLETION, VI_QUEUE,VI_NULL);

viClear(vi);// Sends device clear command

// Set attributes for the session

viSetAttribute(vi,VI_ATTR_ASRL_BAUD,baud);

viSetAttribute(vi,VI_ATTR_ASRL_DATA_BITS,8);

viPrintf(vi, "*RST\n");// Resets the signal generator

printf("The signal generator has been reset\n");

printf("Power level should be -135 dBm\n");

printf("\n");// Prints new line character to the display

viClose(vi);// Closes session

viClose(defaultRM);// Closes default session

}

Queries Using Agilent BASIC
This example program demonstrates signal generator query commands over RS-232. Query commands are
of the type *IDN? and are identified by the question mark that follows the mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:

The following program example is available on the PSG Documentation CD-ROM as rs232ex2.txt.

10 !**

20 !

30 ! PROGRAM NAME: rs232ex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used to read

60 ! data from the signal generator.
112 Chapter 2

Programming Examples
RS-232 Programming Examples
70 !

80 ! Start Agilent BASIC, type in the following code and then RUN the program.

90 !

100 !**

110 !

120 INTEGER Num

130 DIM Str$[200],Str1$[20]

140 CONTROL 9,0;1 ! Resets the RS-232 interface

150 CONTROL 9,3;9600 ! Sets the baud rate to match signal generator rate

160 STATUS 9,4;Stat ! Reads the value of register 4

170 Num=BINAND(Stat,7) ! Gets the AND value

180 CONTROL 9,4;Num ! Sets the parity to NONE

190 OUTPUT 9;"*IDN?" ! Querys the sig gen ID

200 ENTER 9;Str$! Reads the ID

210 WAIT 2 ! Waits 2 seconds

220 PRINT "ID =",Str$! Prints ID to the screen

230 OUTPUT 9;"POW:AMPL -5 dbm" ! Sets the the power level to -5 dbm

240 OUTPUT 9;"POW?" ! Querys the power level of the sig gen

250 ENTER 9;Str1$! Reads the queried value

260 PRINT "Power = ",Str1$! Prints the power level to the screen

270 END ! End the program

Queries Using VISA and C
This example uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. Start Microsoft Visual C++, add the required files,
and enter the following code into your .cpp source file.

The following program example is available on the PSG Documentation CD-ROM as rs232ex2.cpp.

//**

//

// PROGRAM NAME: rs232ex2.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to control
Chapter 2 113

Programming Examples
RS-232 Programming Examples
// the signal generator.

//

// Connect the computer to the signal generator using the RS-232 serial cable

// and enter the following code into the project .cpp source file.

// The program queries the signal generator ID string and sets and queries the power

// level. Query results are printed to the screen. The default attributes e.g. 9600 baud,

// parity, 8 data bits,1 stop bit are used. These attributes can be changed using VISA

// functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

#include <conio.h>

#define MAX_COUNT 200

int main (void)

{

ViStatusstatus; // Declares a type ViStatus variable

ViSessiondefaultRM, instr;// Declares type ViSession variables

ViUInt32retCount; // Return count for string I/O

ViCharbuffer[MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM);// Initializes the system

// Open communication with Serial Port 2

status = viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &instr);
114 Chapter 2

Programming Examples
RS-232 Programming Examples
if(status){// If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

 // Set timeout for 5 seconds

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

// Asks for sig gen ID string

 status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Reads the sig gen response

 status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0';// Indicates the end of the string

printf("Signal Generator ID: "); // Prints header for ID

printf(buffer);// Prints the ID string to the screen

printf("\n");// Prints carriage return

// Flush the read buffer

// Sets sig gen power to -5dbm

status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);

// Querys the sig gen for power level

status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);

// Read the power level

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0';// Indicates the end of the string

printf("Power level = ");// Prints header to the screen

printf(buffer);// Prints the queried power level

printf("\n");

status = viClose(instr);// Close down the system

status = viClose(defaultRM);

return 0;

}

Chapter 2 115

Programming Examples
RS-232 Programming Examples
116 Chapter 2

3 Programming the Status Register System

This chapter provides the following major sections:

• “Overview” on page 118

• “Status Register Bit Values” on page 121

• “Accessing Status Register Information” on page 122

• “Status Byte Group” on page 127

• “Status Groups” on page 130
117

Programming the Status Register System
Overview
Overview
During remote operation, you may need to monitor the status of the signal generator for error conditions or
status changes. The signal generator’s error queue can be read with the SCPI query :SYSTem:ERRor?
(Refer to “:ERRor[:NEXT]” in the SCPI command reference guide) to see if any errors have occurred. An
alternative method uses the signal generator’s status register system to monitor error conditions and/or
condition changes.

The signal generator’s status register system provides two major advantages:

• You can monitor the settling of the signal generator using the settling bit of the Standard Operation
Status Group’s condition register.

• You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving a
speed advantage.

The signal generator’s instrument status system provides complete SCPI standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a hierarchical order.
The lower-level status registers propagate data to the higher-level registers using summary bits. The Status
Byte Register is at the top of the hierarchy and contains the status information for lower level registers.

The lower level status registers monitor specific events or conditions, and are grouped according to their
functionality. For example, the Data Questionable Frequency Status Group consists of five registers. This
chapter may refer to a group as a register so that the cumbersome correct description is avoided. For
example, the Standard Operation Status Group’s Condition Register can be referred to as the Standard
Operation Status register. Refer to “Status Groups” on page 130 for more information.

Figure 3-1 and Figure 3-2 show the signal generator’s status byte register system and hierarchy.

The status register system uses IEEE 488.2 commands (those beginning with *) to access the higher-level
summary registers. Lower-level registers can be accessed using STATus SCPI commands.
118 Chapter 3

Programming the Status Register System
Overview
Figure 3-1 The Overall Status Byte Register System (1 of 2)
Chapter 3 119

Programming the Status Register System
Overview
Figure 3-2 The Overall Status Byte Register System (2 of 2)
120 Chapter 3

Programming the Status Register System
Status Register Bit Values
Status Register Bit Values
Each bit in a register is represented by a decimal value based on its location in the register (see Table 3-1).

• To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

• To enable more than one bit, send the sum of all the bits that you want to enable.
• To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to give a decimal value of 65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example, if you want to query the
Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits=1) then the query will return the decimal value 140. The
value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

NOTE Bit 15 is not used and is always set to zero.

Table 3-1 Status Register Bit Decimal Values

Decimal
Value

A
lw

ay
s

0

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16 8 4 2 1

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Chapter 3 121

Programming the Status Register System
Accessing Status Register Information
Accessing Status Register Information
1. Determine which register contains the bit that reports the condition. Refer to Figure 3-1 on page 119 or

Figure 3-2 on page 120 for register location and names.
2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.

Determining What to Monitor
You can monitor the following conditions:

• current signal generator hardware and firmware status
• whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These registers
represent the current state of the signal generator and are updated in real time. When the condition
monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes false, the bit resets
to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an event.
The transitions can be positive to negative, negative to positive, or both. To monitor a certain condition,
enable the bit associated with the condition in the associated positive and negative registers.

Once you have enabled a bit via the transition registers, the signal generator monitors it for a change in its
condition. If this change in condition occurs, the corresponding bit in the event register will be set to 1.
When a bit becomes true (set to 1) in the event register, it stays set until the event register is read or is
cleared. You can thus query the event register for a condition even if that condition no longer exists.

The event register can be cleared only by querying its contents or sending the *CLS command, which clears
all event registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition registers
are preset to register positive transitions (a change going from 0 to 1). This can be changed so the selected
bit is detected if it goes from true to false (negative transition), or if either transition occurs.
122 Chapter 3

Programming the Status Register System
Accessing Status Register Information
Deciding How to Monitor
You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

• The polling method

In the polling method, the signal generator has a passive role. It tells the controller that conditions have
changed only when the controller asks the right question. This is accomplished by a program loop that
continually sends a query.

The polling method works well if you do not need to know about changes the moment they occur. Use
polling in the following situations:

— when you use a programming language/development environment or I/O interface that does not
support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added complexity of
setting up an SRQ handler

• The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active role. It
tells the controller when there has been a condition change without the controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a change
using the polling method, the program must repeatedly read the registers.) Use the SRQ method in the
following situations:

— when you need time-critical notification of changes
— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ interrupts (for
example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using this method, you must do the
following:

1. Determine which bit monitors the condition.

2. Send commands to enable the bit that monitors the condition (transition registers).

3. Send commands to enable the summary bits that report the condition (event enable registers).

4. Send commands to enable the status byte register to monitor the condition.

5. Enable the controller to respond to service requests.
Chapter 3 123

Programming the Status Register System
Accessing Status Register Information
The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would otherwise
have used to monitor the condition, as in a loop method, can be used to perform other tasks. The application
determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the RQS bit in the status byte register is set.
In order for the controller to respond to the change, the Service Request Enable Register needs to be enabled
for the bit(s) that will trigger the SRQ.

Generating a Service Request

 The Service Request Enable Register lets you choose the bits in the Status Byte Register that will trigger a
service request. Send the *SRE <num> command where <num> is the sum of the decimal values of the bits
you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation Status
register summary bit is set to 1, a service request is generated) send the command *SRE 128. Refer to Figure
3-1 on page 119 or Figure 3-2 on page 120 for bit positions and values.

The query command *SRE? returns the decimal value of the sum of the bits previously enabled with the
*SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum of the
bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136 (bit 7=128 and bit
3=8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when it
is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are necessary to
inform the controller that the signal generator requires service. Asserting SRQ informs the controller that
some device on the bus requires service. Setting the RQS bit allows the controller to determine which signal
generator requires service.

This process is initiated if both of the following conditions are true:

• The corresponding bit of the Service Request Enable Register is also set to 1.

• The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ process is
initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the controller
to perform a serial poll when SRQ is true. Each device on the bus returns the contents of its status byte
register in response to this poll. The device whose request service summary bit (RQS) bit is set to 1 is the
124 Chapter 3

Programming the Status Register System
Accessing Status Register Information
device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode
set to continuous, restarting the measurement (INIT command) can cause the measuring bit
to pulse low. This causes an SRQ when you have not actually reached the “end-of-sweep”
or measurement condition. To avoid this, do the following:

1. Send the command INITiate:CONTinuous OFF.

2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands
Most monitoring of signal generator conditions is done at the highest level, using the IEEE 488.2 common
commands listed below. You can set and query individual status registers using the commands in the STATus
subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all the event
registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register which
is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part of the
Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the current
processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request Enable
Register, the Standard Event Status Enable Register, and device-specific event enable registers at power
on. The query returns the flag setting from the *PSC command.

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and error/event queue
enable registers. (Refer to Table 3-2.)
Chapter 3 125

Programming the Status Register System
Accessing Status Register Information
Table 3-2 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0

:STATus:OPERation:NTRansition 0

:STATus:OPERation:PTRransition 32767

:STATus:OPERation:BASeband:ENABle 0

:STATus:OPERation:BASeband:NTRansition 0

:STATus:OPERation:BASeband:PTRransition 32767

:STATus:QUEStionable:CALibration:ENABle 32767

:STATus:QUEStionable:CALibration:NTRansition 32767

:STATus:QUEStionable:CALibration:PTRansition 32767

:STATus:QUEStionable:ENABle 0

:STATus:QUEStionable:NTRansition 0

:STATus:QUEStionable:PTRansition 32767

:STATus:QUEStionable:FREQuency:ENABle 32767

:STATus:QUEStionable:FREQuency:NTRansition 32767

:STATus:QUEStionable:FREQuency:PTRansition 32767

:STATus:QUEStionable:MODulation:ENABle 32767

:STATus:QUEStionable:MODulation:NTRansition 32767

:STATus:QUEStionable:MODulation:PTRansition 32767

:STATus:QUEStionable:POWer:ENABle 32767

:STATus:QUEStionable:POWer:NTRansition 32767

:STATus:QUEStionable:POWer:PTRansition 32767

:STATus:QUEStionable:BERT:ENABle 32767

:STATus:QUEStionable:BERT:NTRansition 32767

:STATus:QUEStionable:BERT:PTRansition 32767
126 Chapter 3

Programming the Status Register System
Status Byte Group
Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.
Chapter 3 127

Programming the Status Register System
Status Byte Group
Status Byte Register
Table 3-3 Status Byte Register Bits

Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty;
the SCPI error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable
summary bit has been set. The Data Questionable Event Register can then be read to determine the specific
condition that caused this bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output
queue. There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit
has been set. The Standard Event Status Register can then be read to determine the specific event that caused
this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least
one reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits
in the Status Byte are individually ANDed with their corresponding service request enable register, then each
individual bit value is ORed and input to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation
Status Group’s summary bit has been set. The Standard Operation Event Register can then be read to
determine the specific condition that caused this bit to be set.

Query: *STB?

Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.

Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)

The decimal value 200 is returned when the MSS bit is set high (1).

Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)
128 Chapter 3

Programming the Status Register System
Status Byte Group
Service Request Enable Register
The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a service
request.

*SRE <data> <data> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 3-1 on page 119 or Figure 3-2 on
page 120.

Example: Enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit sets to 1:
send the command *SRE 160 (128 + 32)

Query: *SRE?

Response: The decimal value of the sum of the bits previously enabled with the *SRE <data>
command.
Chapter 3 129

Programming the Status Register System
Status Groups
Status Groups
The Standard Operation Status Group and the Data Questionable Status Group consist of the registers listed
below. The Standard Event Status Group is similar but does not have negative or positive transition filters or
a condition register.

Condition
Register A condition register continuously monitors the hardware and firmware status of the

signal generator. There is no latching or buffering for a condition register; it is updated
in real time.

Negative
Transition
Filter A negative transition filter specifies the bits in the condition register that will set

corresponding bits in the event register when the condition bit changes from 1 to 0.

Positive
Transition
Filter A positive transition filter specifies the bits in the condition register that will set

corresponding bits in the event register when the condition bit changes from 0 to 1.

Event
Register An event register latches transition events from the condition register as specified by the

positive and negative transition filters. Once the bits in the event register are set, they
remain set until cleared by either querying the register contents or sending the *CLS
command.

Event
Enable
Register An enable register specifies the bits in the event register that generate the summary bit.

The signal generator logically ANDs corresponding bits in the event and enable
registers and ORs all the resulting bits to produce a summary bit. Summary bits are, in
turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status summary bits.
In each status group, corresponding bits in the condition register are filtered by the negative and positive
transition filters and stored in the event register. The contents of the event register are logically ANDed with
the contents of the enable register and the result is logically ORed to produce a status summary bit in the
Status Byte Register.
130 Chapter 3

Programming the Status Register System
Status Groups
Standard Event Status Group
The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status Byte
Register. This group consists of the Standard Event Status Register (an event register) and the Standard
Event Status Enable Register.
Chapter 3 131

Programming the Status Register System
Status Groups
Standard Event Status Register

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status Register
set the summary bit (bit 5 of the Status Byte Register) to 1.

Table 3-4 Standard Event Status Register Bits

Bit Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were
completed following execution of the *OPC command.

1 Request Control. This bit is always set to 0 (the signal generator does not request control).

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have SCPI error
numbers from −499 to −400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have SCPI error numbers from −399 to −300 and 1 to 32767.

4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have
SCPI error numbers from −299 to −200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
SCPI error numbers from −199 to −100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true
even if the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.

Query: *ESR?

Response: The decimal sum of the bits set to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

*ESE <data> <data> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 7 and bit 6 so that whenever either of those bits is set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1:
send the command *ESE 192 (128 + 64)

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the *ESE <data>
command.
132 Chapter 3

Programming the Status Register System
Status Groups
Standard Operation Status Group
The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte Register.
This group consists of the Standard Operation Condition Register, the Standard Operation Transition Filters
(negative and positive), the Standard Operation Event Register, and the Standard Operation Event Enable
Register.
Chapter 3 133

Programming the Status Register System
Status Groups
Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator; condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits

Bit Description

0 I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

4 Measuring. A1 in this bit position indicates that a bit error rate test is in progress

5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger” state.
When option 300 is enabled, a 1 in this bit position indicates that TCH/PDCH synchronization is
established and waiting for a trigger to start measurements.

6,7,8 Unused. These bits are always set to 0.

9 DCFM/DCφM Null in Progress. A 1 in this bit position indicates that the signal generator is
currently performing a DCFM/DCΦM zero calibration.

10 Baseband is Busy. A 1 in this bit position indicates that the baseband generator is communicating or
processing. This is a summary bit. See the “Baseband Operation Status Group” on page 136 for more
information.

11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing the
necessary pre-sweep calculations.

12, 13, 14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:OPERation:CONDition?

Response: The decimal sum of the bits that are set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).
134 Chapter 3

Programming the Status Register System
Status Groups
Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as specified by
the transition filters. Event registers are destructive read only: reading data from an event register clears the
content of that register.

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation Event
Register set the summary bit (bit 7 of the Status Byte Register) to 1

Commands: STATus:OPERation:NTRansition <value> (negative transition), or
STATus:OPERation:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:NTRansition?

STATus:OPERation:PTRansition?

Query: STATus:OPERation[:EVENt]?

Command: STATus:OPERation:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Standard Operation
Status summary bit of the Status Byte Register is set to 1:
send the command STAT:OPER:ENAB 520 (512 + 8)

Query: STATus:OPERation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:OPERation:ENABle <value> command.
Chapter 3 135

Programming the Status Register System
Status Groups
Baseband Operation Status Group
The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the Standard
Operation Status Group. This group consists of the Baseband Operation Condition Register, the Baseband
Operation Transition Filters (negative and positive), the Baseband Operation Event Register, and the
Baseband Operation Event Enable Register.
136 Chapter 3

Programming the Status Register System
Status Groups
Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as specified by
the transition filters. Event registers are destructive read only: reading data from an event register clears the
contents of that register.

Table 3-6 Baseband Operation Condition Register Bits

Bit Description

0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.

1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal generator baseband
generator is handling data I/O.

2–14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:OPERation:BASeband:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 2 is returned. The decimal sum = 2 (bit 1).

Commands: STATus:OPERation:BASeband:NTRansition <value> (negative transition), or
STATus:OPERation:BASeband:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:BASeband:NTRansition?

STATus:OPERation:BASeband:PTRansition?

Query: STATus:OPERation:BASeband[:EVENt]?
Chapter 3 137

Programming the Status Register System
Status Groups
Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register lets you choose which bits in the Baseband Operation Event
Register can set the summary bit (bit 10 of the Standard Operation Status Group).

Command: STATus:OPERation:BASeband:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 0 and bit 1 so that whenever either of those bits is set to 1, the Baseband Operation
Status summary bit of the Standard Operation Status Register is set to 1: send the command
STAT:OPER:BAS:ENAB 520 (512 + 8)

Query: STATus:OPERation:BASeband:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:OPERation:BASeband:ENABle <value> command.
138 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Status Group
The Data Questionable Status Group is used to determine the specific event that set bit 3 in the Status Byte
Register. This group consists of the Data Questionable Condition Register, the Data Questionable Transition
Filters (negative and positive), the Data Questionable Event Register, and the Data Questionable Event
Enable Register.
Chapter 3 139

Programming the Status Register System
Status Groups
Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of the
signal generator; condition registers are read only.

Table 3-7 Data Questionable Condition Register Bits

Bit Description

0, 1, 2 Unused. These bits are always set to 0.

3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit
position indicates that one of the following may have happened: the ALC (Automatic Leveling
Control) is unable to maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse
power protection circuit has been tripped. See the “Data Questionable Power Status Group” on
page 142 for more information.

4 Temperature (OVEN COLD). A 1 in this bit position indicates that the internal reference oscillator
(reference oven) is cold.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1
in this bit position indicates that one of the following may have happened: synthesizer PLL unlocked,
10 MHz reference VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or
baseband 1 unlocked. For more information, see the “Data Questionable Frequency Status Group” on
page 145.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the QUEStionable:MODulation register. A
1 in this bit position indicates that one of the following may have happened: modulation source 1
underrange, modulation source 1 overrange, modulation source 2 underrange, modulation source 2
overrange, modulation uncalibrated. See the “Data Questionable Modulation Status Group” on
page 148 for more information.

8 Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A
1 in this bit position indicates that one of the following may have happened: an error has occurred in
the DCFM/DCΦM zero calibration, an error has occurred in the I/Q calibration. See the “Data
Questionable Calibration Status Group” on page 151 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. This bit can only
be cleared by cycling the signal generator’s line power. *CLS will not clear this bit.

10–14 Unused. These bits are always set to 0.

15 Always 0.
140 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition register set
corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified by
the transition filters. Event registers are destructive read-only: reading data from an event register clears the
contents of that register.

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable Event
Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Query: STATus:QUEStionable:CONDition?

Response: The decimal sum of the bits that are set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Commands: STATus:QUEStionable:NTRansition <value> (negative transition), or
STATus:QUEStionable:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:NTRansition?

STATus:QUEStionable:PTRansition?

Query: STATus:QUEStionable[:EVENt]?

Command: STATus:QUEStionable:ENABle <value> command where <value> is the sum of the
decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Status summary bit of the Status Byte Register is set to 1:
send the command STAT:QUES:ENAB 520 (512 + 8)

Query: STATus:QUEStionable:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:ENABle <value> command.
Chapter 3 141

Programming the Status Register System
Status Groups
Data Questionable Power Status Group
The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in the Data
Questionable Condition Register. This group consists of the Data Questionable Power Condition Register,
the Data Questionable Power Transition Filters (negative and positive), the Data Questionable Power Event
Register, and the Data Questionable Power Event Enable Register.
142 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware status
of the signal generator; condition registers are read only.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only: reading data from an event
register clears the contents of that register.

Table 3-8 Data Questionable Power Condition Register Bits

Bit Description

0 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection
(RPP) circuit has been tripped. There is no output in this state. Any conditions that may have caused the
problem should be corrected. The RPP circuit can be reset by sending the remote SCPI command:
OUTput:PROTection:CLEar.

1 Unleveled. A 1 in this bit indicates that the output leveling loop is unable to set the output power.

2−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:POWer:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:POWer:NTRansition <value> (negative transition), or
STATus:QUEStionable:POWer:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:POWer:NTRansition?
STATus:QUEStionable:POWer:PTRansition?

Query: STATus:QUEStionable:POWer[:EVENt]?
Chapter 3 143

Programming the Status Register System
Status Groups
Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data Questionable
Power Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Command: STATus:QUEStionable:POWer:ENABle <value> command where <value> is the sum
of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Power summary bit of the Data Questionable Condition Register is set to 1: send the command
STAT:QUES:POW:ENAB 520 (512 + 8)

Query: STATus:QUEStionable:POWer:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:POWer:ENABle <value> command.
144 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Frequency Status Group
The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5 in the
Data Questionable Condition Register. This group consists of the Data Questionable Frequency Condition
Register, the Data Questionable Frequency Transition Filters (negative and positive), the Data Questionable
Frequency Event Register, and the Data Questionable Frequency Event Enable Register.
Chapter 3 145

Programming the Status Register System
Status Groups
Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and firmware
status of the signal generator; condition registers are read-only.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-9 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 in this bit indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is unlocked.

2 1 Ghz Ref Unlocked. A 1 in this bit indicates that the 1 Ghz reference signal is unlocked.

3 Baseband 1 Unlocked. A 1 in this bit indicates that the baseband 1 generator is unlocked.

4 Unused. This bit is always set to 0.

5 Sampler Loop Unlocked. A 1 in this bit indicates that the sampler loop is unlocked.

6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.

7−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:FREQuency:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:FREQuency:NTRansition <value> (negative transition) or
STATus:QUEStionable:FREQuency:PTRansition <value> (positive transition)
where <value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:FREQuency:NTRansition?

STATus:QUEStionable:FREQuency:PTRansition?
146 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event registers are
destructive read-only: reading data from an event register clears the content of that register.

Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit (bit 5 of
the Data Questionable Condition Register) to 1.

Query: STATus:QUEStionable:FREQuency[:EVENt]?

Command: STATus:QUEStionable:FREQuency:ENABle <value>, where <value> is the sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1: send the
command STAT:QUES:FREQ:ENAB 520 (512 + 8)

Query: STATus:QUEStionable:FREQuency:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:FREQuency:ENABle <value> command.
Chapter 3 147

Programming the Status Register System
Status Groups
Data Questionable Modulation Status Group
The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7 in the
Data Questionable Condition Register. This group consists of the Data Questionable Modulation Condition
Register, the Data Questionable Modulation Transition Filters (negative and positive), the Data
Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable Register.
148 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-10 Data Questionable Modulation Condition Register Bits

Bit Description

0 Modulation 1 Undermod. A 1 in this bit indicates that the External 1 input, ac coupling on, is less than
0.97 volts.

1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is greater than
1.03 volts.

2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on, is less than
0.97 volts.

3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is greater than
1.03 volts.

4 Modulation Uncalibrated. A 1 in this bit indicates that modulation is uncalibrated.

5−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:MODulation:CONDition?

Response: The decimal sum of the bits that are set to 1

Commands: STATus:QUEStionable:MODulation:NTRansition <value> (negative transition),
or STATus:QUEStionable:MODulation:PTRansition <value> (positive
transition), where <value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:MODulation:NTRansition?
STATus:QUEStionable:MODulation:PTRansition?
Chapter 3 149

Programming the Status Register System
Status Groups
Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only: reading data from an event
register clears the contents of that register.

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable Condition
Register) to 1.

Query: STATus:QUEStionable:MODulation[:EVENt]?

Command: STATus:QUEStionable:MODulation:ENABle <value> command where <value> is
the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1: send the
command STAT:QUES:MOD:ENAB 520 (512 + 8)

Query: STATus:QUEStionable:MODulation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:MODulation:ENABle <value> command.
150 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Calibration Status Group
The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8 in the
Data Questionable Condition Register. This group consists of the Data Questionable Calibration Condition
Register, the Data Questionable Calibration Transition Filters (negative and positive), the Data Questionable
Calibration Event Register, and the Data Questionable Calibration Event Enable Register.
Chapter 3 151

Programming the Status Register System
Status Groups
Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of the
signal generator; condition registers are read only.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Table 3-11 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM/DCΦM Zero Failure. A 1 in this bit indicates that the DCFM/DCΦM zero calibration routine has
failed. This is a critical error. The output of the source is not valid until the condition of this bit is 0.

1 I/Q Calibration Failure. A 1 in this bit indicates that the I/Q modulation calibration experienced a failure.

2−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:CALibration:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:CALibration:NTRansition <value> (negative transition),
or STATus:QUEStionable:CALibration:PTRansition <value> (positive
transition), where <value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:CALibration:NTRansition?
STATus:QUEStionable:CALibration:PTRansition?

Query: STATus:QUEStionable:CALibration[:EVENt]?
152 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable Condition
register) to 1.

Command: STATus:QUEStionable:CALibration:ENABle <value>, where <value> is the sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1: send the
command STAT:QUES:CAL:ENAB 520 (512 + 8)

Query: STATus:QUEStionable:CALibration:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:CALibration:ENABle <value> command.
Chapter 3 153

Programming the Status Register System
Status Groups
154 Chapter 3

4 Downloading and Using Files

Computer generated data can be created on a PC or workstation and downloaded into the signal generator.
Depending on the options present, the signal generator can accept ARB waveform data, FIR filter coefficient
data, and user file data downloads.

This section explains signal generator memory and different waveform download methods:

• “Types of Memory” on page 156

• “ARB Waveform Data” on page 157

• “Programming Examples for Generating and Downloading Files” on page 182

• “Understanding ARB Waveform File Composition and Encryption” on page 166

• “Downloading User File Data” on page 168

• “Downloading FIR Filter Coefficients” on page 173

• “Downloading Directly into Pattern RAM (PRAM)” on page 176

NOTE Before using this chapter, become familiar with the signal generator’s front-panel controls
and softkey menus. Refer to the User’s Guide for more information.
155

Downloading and Using Files
Types of Memory
Types of Memory
The signal generator has two types of waveform memory:

• Volatile Waveform Memory (WFM1): Data stored in WFM1 cannot be recovered if it is overwritten, or
if the power to the signal generator is cycled.

The signal generator’s volatile waveform memory uses the following directory structure:

— WFM1 data is stored in the signal generator’s /user/bbg1/waveform/ directory.

— MKR1 data is stored in the signal generator’s /user/bbg1/markers/ directory.

The bbg1 directory does not share space with other types of file directories, such as bit, binary, and state.

• Non-volatile Waveform Memory (NVWFM): Data stored in NVWFM remains until you delete or
overwrite it.

Unlike WFM1, non-volatile memory is not partitioned; non-volatile waveform memory and non-volatile
marker memory (NVMKR), share the same space (along with bit, binary, and state directories).

The signal generator’s non-volatile waveform memory uses the following directory structure:

— NVWFM data is stored in the signal generator’s /user/waveform/ directory.

— NVMKR data is stored in the signal generator’s /user/markers/ directory.

NOTE Waveform data files must be loaded into WFM1 (volatile waveform memory) before they
can be sequenced and played by the signal generator.

Signal generators with Option 601 have 8 megasamples (40 MB) of volatile memory. Signal generators with
Option 602 have 64 megasamples (320 MB) of volatile memory. This memory is partitioned as follows:

• Option 601: 32 megabytes for waveform data and 8 megabytes for marker data.

• Option 602: 256 megabytes for waveform data and 64 megabytes for marker data.

Signal generators with the internal hard drive (Option 005) have approximately 1 gigasample (6 GB) of
non-volatile storage. Without the Option 005 internal hard drive, the signal generator has 3 megasamples
(15 MB) of non-volatile storage.
156 Chapter 4

Downloading and Using Files
ARB Waveform Data
ARB Waveform Data
The signal generator accepts I/Q waveform data downloads. User-defined I/Q waveforms can be sequenced
together with other waveforms and played as part of a waveform sequence (see the User’s Guide for details
on sequencing waveforms).

Three files are used by the signal generator to generate waveform data: an I/Q waveform file, a marker file,
and a header file. You only need to specify the I/Q data waveform file; the other files are optional. If not
specified, the marker and header files are automatically created by the signal generator. The header
information contains signal generator ARB settings so that the waveform can be identically reproduced. The
marker file contains marker routing and configuration settings for markers.

You must specify the I/Q waveform file and the waveform must be defined using a minimum of 60 I/Q
samples or points. A marker file can be created and associated with the I/Q waveform file. However, if you
do not define a marker file, the signal generator will automatically create one and initialize it with all zeros.
The header file is created automatically by the signal generator and can be edited manually via the signal
generator’s front–panel softkeys.

The I/Q waveform data drives the I and Q ports of the signal generator’s I/Q modulator. Waveform data is
described using 16-bit I and 16-bit Q integer values in signed two’s complement format. A single I/Q
waveform data file is created by interleaving the I and Q data values.

The signal generator uses a most significant byte (MSB) first, least significant byte (LSB) last format when
processing data downloads. If the PC used to create I/Q data stores integers in a LSB/MSB format, then the
two–byte integer value LSB and MSB must be swapped before downloading to the signal generator. Refer to
the download programming examples for more information and details on swapping LSB and MSB bytes.

The two–byte I integer and two–byte Q integer values, along with a marker byte make up one sample. There
are five bytes of data for every I/Q waveform sample as shown in the following table.

I/Q Data File Structure

Io = 16 bits Q0 = 16 bits I1 = 16 bits Q1 = 16 bits

2 bytes 2 bytes 2 bytes 2 bytes

Marker File Structure

4 bits unused
MSB

M0 = 4 bits
LSB

4 bits unused
MSB

M1 = 4 bits
LSB

1 byte 1 byte

1 sample 1 sample
Chapter 4 157

Downloading and Using Files
ARB Waveform Data
Each marker sample is described by a single byte representing four marker bits and four unused bits. The
result is that the I/Q file has four times as many bytes as the marker file.

If you do not create a marker file for an I/Q waveform, the signal generator automatically creates a default
marker file initialized with zeros. The marker data drives the signal generator’s rear-panel EVENT output
connectors:

• Marker bit 1 drives EVENT 1 (BNC)
• Marker bit 2 drives EVENT 2 (BNC)
• Marker bit 3 drives EVENT 3 (Auxiliary D-Connector, pin 19)
• Marker bit 4 drives EVENT 4 (Auxiliary D-Connector, pin 18)

Marker File Location

MKR1: /user/bbg1/markers/ NVMKR: /user/markers/

Data Requirements and Limitations

• Data must be in signed, 2’s complement (binary) format. Two bytes are needed to express an I or Q
integer value. The signal generator accepts data as MSB first, LSB last or big–endian format.

• Data must be in 2-byte integer value pairs. Two bytes for an I integer followed by two bytes for the Q
integer.

• Integers must be between −32768 and 32767.

This range is based on the input specifications of the 16-bit DAC used to create the analog voltages for
the I/Q modulator.

• 0 = 0 volts

• –32768 gives negative full-scale output

• 32767 gives positive full-scale output

• Each I/Q waveform must contain at least 60 samples to play in the waveform sequencer (one sample
equals five bytes; one pair of I/Q values (four bytes) and one marker byte). If the minimum number of
samples required is not met, the signal analyzer displays: “File format invalid.” The file format is
discussed in greater detail in following sections.

If a waveform file is too large to fit into a 1024-byte memory block, additional memory space is
allocated in multiples of 1024 bytes. For example, a waveform represented by 500 samples is allocated
to a 3072-byte memory block (500 samples x 5 bytes); a 60 sample waveform file occupies 1024 bytes
of waveform memory. The header uses 128 bytes of memory in the first memory block.

Total memory usage may be much more than the sum of the samples that make up waveform files; many
small waveform files can use large amounts of memory.

• Each I/Q waveform must contain an even number of samples before it can be played. If this requirement
158 Chapter 4

Downloading and Using Files
ARB Waveform Data
is not met, the signal analyzer displays: “File format invalid.”

• A marker file is always associated with an I/Q waveform file. A default marker file (initialized with all
zeros) is created by the signal generator if a marker file is not provided by the user.

NOTE If the default marker file is used, ensure that the Pulse/RF Blank softkey is set to None.
Markers may have been set to Pulse/RF Blank by a previous file header.

• A header file is associated with the I/Q waveform and marker file and is created automatically. This
default header file does not specify any marker routing information and does not reset or clear marker
configurations set by a previous header file. Therefore, it is important to verify that marker settings are
correct for the I/Q waveform file that you want to play. Check the routing of markers before playing the
waveform

• The user-defined marker file and I/Q waveform file must use the same file name in the signal generator’s
memory (the file directory is different).

Downloading Waveforms
Before they are sequenced and played, waveform data (consisting of the waveform file, the associated
marker file, and the header file) must be downloaded or copied into WFM1 memory. You can download
waveform files using the following methods:

• SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)

• SCPI over the GPIB, RS-232, or LAN interface

• SCPI with sockets LAN (using port 5025)

• File Transfer Protocol (FTP). Refer to “Using FTP” on page 162 for information on FTP.

Sample Command Line Using SCPI

SCPI command, <Arbitrary Block Data>

<Arbitrary Block Data> is defined in the IEEE std. 488.2-1992 section 7.7.6. The following is an
example of the format used by many languages, such as HP BASIC for Windows, to download waveform
data to the signal generator’s WFM1 memory:

:MMEM:DATA "WFM1:<file_name>", #ABC

<file_name> the name of the waveform file stored in the signal generator.

A the number of decimal digits to follow in B.

B a decimal number specifying the number of data bytes to follow in C.

C the binary waveform data.
Chapter 4 159

Downloading and Using Files
ARB Waveform Data
The designator “WFM1:” is synonymous with the /USER/BBG1/WAVEFORM/directory path and is
explained in more detail in following sections.

NOTE The command syntax and downloading method for arbitrary block data depends on the
programming language and software libraries you are using.

If you are using Agilent Technologies’ VISA COM I/O Library (available in the Agilent IO
Libraries for Windows Version M.01.01.04), you can use the WriteIEEEBlock method,
which does not use the #ABC formatting parameter. Refer to “Downloading Using Visual
Basic 6.0” on page 202 for an example of this method.

The following examples present further information on data downloads to the signal generator and the
command syntax and format to use.

Example 1

:MMEM:DATA "/USER/BBG1/WAVEFORM/FILENAME", #3240<240 bytes of data>

FILENAME the file name to appear in the signal generator’s waveform memory catalog.

#3 3 decimal digits will be used to define the number of data bytes.

240 number of data bytes.

<240 bytes of data> the binary waveform data for each 2-byte I and 2 byte Q value is defined as MSB (most
significant byte) first and LSB (least significant byte) last. The waveform file must be
described with at least 60 I/ Q samples. In this example, 240 bytes of data represents 60
I/ Q samples. No marker file is specified so the signal generator will automatically
create and use a default marker file (60 bytes) and associate it with the waveform file.

Example 2

:MMEM:DATA "WFM1:file_name", #212125407897QBC

file_name the file name to appear in the signal generator’s waveform memory catalog.

#2 2 decimal digits will be used to define the number of data bytes.

12 12 bytes of data describe the waveform.

125407897QBC the ASCII representation (one byte per character) of the data representing I and Q
values to be downloaded to the signal generator.
160 Chapter 4

Downloading and Using Files
ARB Waveform Data
NOTE This example has too few samples to be used, and is shown only to illustrate the format.
Typically, you cannot read/type the ASCII sample values, as they are usually unprintable.

Downloads to WFM1

NOTE Before downloading files into WFM1 (waveform memory), turn off the ARB generator by
pressing Mode > Dual ARB > ARB Off On on the front instrument’s front panel or by sending
the [:SOURce]:RADio:ARB[:STATe]OFF command.

Use the following SCPI commands to download data to WFM1:

waveform file: MMEM:DATA "WFM1:<file_name>",#ABC

markers file: MMEM:DATA "MKR1:<file_name>",#ABC

The full signal generator file directory path name can be specified in the command line. The following SCPI
commands are equivalent to the previous commands:

waveform file: MMEM:DATA "/USER/BBG1/WAVEFORM/<file_name>",#ABC

markers file: MMEM:DATA "/USER/BBG1/MARKERS/<file_name>",#ABC

Downloads to NVWFM

Use the following SCPI commands to download data to NVWFM:

waveform file: MMEM:DATA "NVWFM:<file_name>",#ABC

markers file: MMEM:DATA "NVMKR:<file_name>",#ABC

The full signal generator file directory path name can be specified in the command line. The following SCPI
commands are equivalent to the previous commands:

waveform file: MMEM:DATA "/USER/WAVEFORM/<file_name>",#ABC

markers file: MMEM:DATA "/USER/MARKERS/<file_name>",#ABC
Chapter 4 161

Downloading and Using Files
ARB Waveform Data
Using FTP

The following procedure uses FTP to download a file from a PC or workstation to the signal generator’s
non-volatile NVWFM memory. You can save the waveform and marker file to volatile WFM1 memory by
specifying the directory paths: /USER/BBG1/WAVEFORM for the waveform data file and
/USER/BBG1/MARKERS for the marker file. Refer to Figure 4-1 on page 163 for an example of the FTP
command prompt screen. Use the get command to upload a file from the signal generator.

1. From the PC Command Prompt or Unix command line, change the directory to the directory where the
waveform data file is stored.

2. From the PC Command Prompt or Unix command line, type ftp instrument name, where instrument
name is the signal generator’s hostname or IP address.

3. At the User: prompt in the ftp window, press the Enter key (no entry is required).

4. At the Password: prompt in the ftp window, press the Enter key (no entry is required).

5. At the ftp prompt, type: put <file_name> /USER/WAVEFORM/<file_name>

where <file_name> is the name of the file to download, and in this example, the name used in the
signal generator’s /USER/WAVEFORM/directory.

If you have a marker file associated with the data file, use the following command to download it to the
signal generator: put <marker_file_name> /USER/MARKERS/<marker_file_name>

where <marker_file_name> the name of the file to download, and in this example, the name used
in the signal generator’s /USER/MARKERS/ directory.

NOTE You must use the same name for the marker file and waveform file. For example, if the
waveform data file is named Test_Data then use Test_Data as the name for the marker file.
If you do not provide a marker file, the signal generator will create a default marker file
initialized to zeros.

6. At the ftp prompt, type: bye

7. At the command prompt, type: exit

The following figure shows the command prompt screen for the FTP session after log in and after the
command ls has executed. The ls command lists the file structure at the current directory location and in
this case /USER is the home directory. Use the command cd to change directories.
162 Chapter 4

Downloading and Using Files
ARB Waveform Data
Figure 4-1 FTP Command Prompt Screen
Chapter 4 163

Downloading and Using Files
ARB Waveform Data
Loading and Playing a Waveform

1. Before you can play a waveform, it must be loaded into volatile WFM1 memory. To select the waveform
file from NVWFM and load it into WFM1, perform the following steps:

Via the front panel:

a. Press Mode > Dual ARB > Select Waveform > Waveform Segments > Load Store

b. In the NVWFM catalog, highlight the desired waveform file and select Load Segment From NVWFM
Memory.

Via the remote interface, send the following SCPI command:

:MEMory:COPY[:NAME] "<NVWFM:file_name>","<WFM1:file_name>"

Because copying a waveform file from volatile to non-volatile memory also copies the associated
marker file, it is not necessary to send a separate command to copy the marker file.

2. Select the waveform file from volatile waveform memory for playback.

Via the front panel: Press Mode > Dual ARB > Select Waveform > Select Waveform.

Via the remote interface: [:SOURce}:RADio:ARB:WAVeform "WFM1:<file_name>"

3. Play the waveform and use it to modulate the RF carrier.

Via the front panel: Turn on ARB Off On, then turn on both modulation and the RF output.

Via the remote interface, send the following SCPI commands:

[:SOURce]:RADio:ARB[:STATe] ON
:OUTPut:MODulation[:STATe] ON
:OUTPut[:STATe] ON
164 Chapter 4

Downloading and Using Files
ARB Waveform Data
Troubleshooting ARB Waveform Data Download Problems

NOTE Review “Data Requirements and Limitations” on page 158.

Symptom Possible Cause

ERROR 224, Text file busy. Attempting to download a waveform that has the same name as the
waveform currently being played by the signal generator.

Either change the name of the downloaded waveform, or turn off the ARB.

ERROR -321, Out of memory. There is not enough space in the ARB memory for the waveform file being
downloaded.

Either reduce the file size of the waveform file, or delete unnecessary files
from ARB memory.

No RF Output If you play a waveform file that has unspecified signal generator settings
(settings not saved to the file header), the signal generator uses the
previously played file’s header settings. If the previous header file had active
RF blanking through the marker function, the RF output power blanks until
you preset the signal generator (which returns the RF blanking marker
function to its default state—off).
Chapter 4 165

Downloading and Using Files
Understanding ARB Waveform File Composition and Encryption
Understanding ARB Waveform File Composition and Encryption
When an ARB modulation format (except dual ARB) is switched on, the signal generator automatically
creates an AUTOGEN_WAVEFORM or AUTOGEN_PRAM_1 waveform file based on current signal generator
settings. The default marker file and file header are also automatically created. If you want to save the data
and settings used for these files, you must copy the file and save it using a different name. This is necessary
because the signal generator uses the same file name each time a modulation format is switched on or
configuration changed which overrides the previously file.

Waveform files can be saved or downloaded to the signal generator and extracted or uploaded only if they
are downloaded using the “MEM:DATA:UNPRotected” command. Waveform files downloaded without
this command cannot be extracted from the signal generator. Waveform files created with earlier signal
generator firmware revisions cannot be extracted from the signal generator.

Downloading and Uploading Waveform Files
Downloading data with the “MEM:DATA:UNPRotected” command allows it to be retrieved or extracted
from the signal generator. Table 4-1 shows command syntax options. If you use FTP, no special command
syntax is necessary.

Extracting Encrypted Waveform Files
Waveform files, created with Agilent Signal Studio, are encrypted files. They can be extracted only from the
signal generator’s SECUREWAVE directory as encrypted files. The SECUREWAVE directory is not an actual
directory, but behaves more like a portal through which waveform data is packaged along with header and
marker data. The files are encrypted during file extraction or uploading. You can use either FTP or SCPI
commands to extract the waveform file from the signal generator to your computer and then download the

Table 4-1

Download Method Command Syntax Options

SCPI/volatile memory :MEM:DATA:UNPRotected "/user/bbg1/waveform/filename",<blockdata>
:MEM:DATA:UNPRotected "WFM1:filename",<blockdata>
:MEM:DATA:UNPRotected "filename@WFM1"

SCPI/non-volatile
memory

:MEM:DATA:UNPRotected "/user/waveform/filename",<blockdata>
:MEM:DATA:UNPRotected "NVWFM:filename",<blockdata>
:MEM:DATA:UNPRotected "filename@NVWFM"

FTP/volatile memory put filename /user/bbg1/waveform/newfilename

FTP/non-volatile
memory

put filename /user/waveform/newfilename
166 Chapter 4

Downloading and Using Files
Understanding ARB Waveform File Composition and Encryption
files to another signal generator (provided the other signal generator has the same options and licenses that
the file requires). Table 4-2 shows the command syntax options for both methods.

Downloading Encrypted Waveform Files
To download an encrypted file to the signal generator, you must ensure that the file is downloaded to the
signal generator’s SECUREWAVE directory where it is automatically deciphered and unpackaged into its
header, waveform, and marker data information. You can use either FTP or SCPI commands to download
encrypted waveform files to the signal generator’s SECUREWAVE directory. Table 4-3 shows the command
syntax options for both methods.

Table 4-2

Extraction Method/Memory Type Command Syntax Options

SCPI/volatile memory MMEM(or MEM):DATA? "/user/bbg1/securewave/filename"
MMEM(or MEM):DATA? "SWFM1:filename"
MMEM(or MEM):DATA? "filename@SWFM1"

SCPI/non-volatile memory MMEM(or MEM):DATA? "/user/securewave/filename"
MMEM(or MEM):DATA? "SNVWFM:filename"
MMEM(or MEM):DATA? "filename@SNVWFM"

FTP/volatile memory get /user/bbg1/securewave/filename

FTP/non-volatile memory get /user/securewave/filename

Table 4-3

Download Method/Memory Type Command Syntax Options

SCPI/volatile memory MMEM(or MEM):DATA
"/user/bbg1/securewave/filename",<blockdata>
MMEM(or MEM):DATA "SWFM1:filename",<blockdata>
MMEM(or MEM):DATA "filename@SWFM1"

SCPI/non-volatile memory MMEM(or MEM):DATA
"/user/securewave/filename",<blockdata>
MMEM(or MEM):DATA "SNVWFM:filename",<blockdata>
MMEM(or MEM):DATA "filename@SNVWFM"

FTP/volatile memory put filename /user/bbg1/securewave/newfilename

FTP/non-volatile memory put filename /user/securewave/newfilename
Chapter 4 167

Downloading and Using Files
Downloading User File Data
Downloading User File Data
The signal generator accepts user file data downloads. The files can be in either binary or bit format with the
data represented as bytes. Both file types can be stored in the signal generator’s non-volatile memory.

• In binary format all 8 bits of the byte are taken as data and used.

• In bit format the number of bits in the file is known and the non-data bits in the last byte are discarded.

After downloading the files, they can be selected as the transmitting data source. This section contains
information on transferring user file data from a PC to the signal generator. It explains how to download user
files into the signal generator’s memory and modulate the carrier signal with those files.

When a file is selected for use in Real-time Custom mode, the file is modulated as a continuous, unframed
stream of data, according to the modulation type, symbol rate, and filtering associated with the selected
format.

When a user file is selected as the data source, the signal generator’s firmware loads the data into waveform
memory, and sets the other control bits depending on the operating mode, regardless of whether framed or
unframed transmission is selected. In this manner, user files are mapped into waveform memory bit-by-bit;
one bit per 32 bit control word.

NOTE Unlike pattern RAM (PRAM) downloads (see page 176), user files contain “data field”
information only. The control data bits required for files downloaded directly into PRAM
are not required for user files.

Data Requirements and Limitations

1. Data must be in binary format. SCPI specifies data represented in bytes.

NOTE Not all binary values are ASCII characters that can be printed. In fact, only ASCII
characters corresponding to decimal values 32 through 126 are printable keyboard
characters. Typically, the ASCII character corresponding to an 8-bit pattern is not printable.

Because of this, the program written to download and upload user files must correctly
convert the binary data into 8-bit ASCII characters.
168 Chapter 4

Downloading and Using Files
Downloading User File Data
2. For binary downloads, bit length must be a multiple of 8.

SCPI specifies that data is represented in bytes and the binary memory stores data as bytes.
If the length (in bits) of the original data pattern is not a multiple of 8, you may need to:

• add additional bits to complete the ASCII character,

• replicate the data pattern without discontinuity until the total length is a multiple of 8 bits,

• truncate and discard bits until you reach a string length that is a multiple of 8, or

• use a bit file and download to bit memory instead.

3. Download size limitations are directly proportional to the available memory space, and the signal
generator’s pattern RAM size (128 megabytes).

You may have to delete files from memory before downloading larger files.

If the data fields absolutely must be continuous data streams, and the size of the data exceeds the
available PRAM, then real-time data and synchronization can be supplied by an external data source to
the front-panel DATA, DATA CLOCK, and SYMBOL SYNC connectors.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only and relate to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

Bit and Binary Directories
User files can be downloaded to a bit (/user/bit/)or binary (/user/bin/)directory in either volatile or
non-volatile memory.

Bit Directory Downloads

The bit directory (/user/bit/) accepts data in integer number of bits, up to the maximum available
memory.

The data length in bytes for files downloaded to bit memory is equal to the number of significant bits plus
seven, divided by eight, then rounded down to the nearest integer. Each file has a 16-byte header associated
with it.

There must be enough bytes to contain the specified number of bits. If the number of bits is not a multiple of
8, the least significant bits of the last byte are ignored.
Chapter 4 169

Downloading and Using Files
Downloading User File Data
For example, specifying 14 bits of a16-bit string using the command :MEMory:DATA:BIT
"file_name", 14, #12Qz results in the last 2 bits being ignored. See the following figure.

NOTE A bit directory provides more versatility, and is the preferred memory location for user file
downloads.

SCPI Commands

Send the following command to download the user file data into the signal generator’s bit directory:

:MEMory:DATA:BIT "<file_name>",<bit count>,<datablock>

Example

:MEMory:DATA:BIT "file_name", 16, #12Qz

file_name provides the user file name as it will appear in the signal generator’s bit catalog

#1 1 decimal digits will be used to define the number of data bytes.

16 Number of bits used.

2 2 bytes of data will follow

Qz the ASCII representation of the 16 bits of data that are downloaded to the signal
generator.

Querying the Waveform Data

Use the following SCPI command to query the user bit data file from a binary directory:

:MEMory:DATA:BIT? "<file_name>"

The output format is the same as the input format.

010 0001 0111 1010 original user-defined data contains 2 bytes, 16 bits total

SCPI command sets bit count to 14; the last 2 bits are ignored

010 0001 0111 1010
170 Chapter 4

Downloading and Using Files
Downloading User File Data
Binary Directory Downloads

The binary directory (/user/bin/) requires that data be formatted in bytes. Files stored or downloaded to
a binary directory are converted to bit files prior to editing in the bit file editor, after which they are stored in
a bit directory as bit files.

A bit directory is preferred for user file downloads.

SCPI Commands

:MMEM:DATA "<file_name>", <datablock>

Send this command to download the user file data into the signal generator’s binary directory. The variable
<file_name> denotes the name of the downloaded user file stored in the signal generator.

NOTE The command syntax and downloading method for arbitrary block data depends on the
programming language and software libraries you are using.

If you are using Agilent Technologies’ VISA COM I/O Library (available in the Agilent IO
Libraries for Windows Version M.01.01.04), you can use the WriteIEEEBlock method,
which does not use the #ABC formatting parameter. Refer to “Downloading Using Visual
Basic 6.0” on page 202 for an example of this method.

Sample Command Line

:MMEM:DATA "file_name", #ABC

file_name the name of the user file stored in the signal generator’s memory

#A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary user file data

Example

:MMEM:DATA "file_name", #1912S407897

file_name provides the user file name as it will appear in the signal generator’s binary memory
catalog

#1 defines the number of decimal digits to follow in “B”

9 denotes how many bytes of data are to follow

12S407897 the ASCII representation of the data that is downloaded to the signal generator. This
variable is represented by C in the sample command line
Chapter 4 171

Downloading and Using Files
Downloading User File Data
Querying the Waveform Data

Use the following SCPI command line to query user file data from a binary memory location:

:MMEM:DATA? "file_name"

where "file_name" includes the directory path "/USER/BIN/file_name". The output format is the
same as the input format and includes the file length and file size information.

Selecting Downloaded User Files as the Transmitted Data
Use the following steps to select the desired user file from the catalog of user files as a continuous stream of
unframed data for a custom modulation.

Via the front panel:

1. For custom modulation, press Mode > Custom > Real Time I/Q Baseband > Data > User File. and highlight
the desired file in the catalog.

[:SOURce]:RADio:CUSTom:DATA "BIT:<file_name>"

2. Press Select File > Custom Off On to On.

[:SOURce]:RADio:CUSTom[:STATe] On

NOTE To select a user file from a binary directory, send the same commands shown in the above
examples without BIT: preceding the file name. For example:

[:SOURce]:RADio:CUSTom:DATA "<file_name>"

3. Modulate and activate the carrier:

a. Set the carrier frequency.

b. Set the carrier amplitude.

c. Turn on modulation.

d. Turn on the RF output.

Troubleshooting User File Download Problems

NOTE Review “Data Requirements and Limitations” on page 168.
172 Chapter 4

Downloading and Using Files
Downloading FIR Filter Coefficients
Downloading FIR Filter Coefficients
The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After downloading
the coefficients, these user-defined FIR filter coefficient values can be selected as the filtering mechanism
for the active digital communications standard.

Data Requirements and Limitations

• Data must be in ASCII format. The signal generator processes FIR filter coefficients as floating point
numbers.

• Data must be in List format. FIR filter coefficient data is processed as a list by the signal generator’s
firmware. See “Sample Command Line” on page 178.

• Filters containing more symbols than the hardware allows are not selectable for that configuration.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps (coefficients), 64 symbols, and a
16-times oversample ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symbols.

• The oversample ratio (OSR) is the number of filter taps per symbol. Oversample ratios from 1 through
32 are possible. The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of
32.

• The sampling period (∆t) is equal to the inverse of the sampling rate (FS). The sampling rate is equal to
the symbol rate multiplied by the oversample ratio. For example, for a symbol rate of 270.83 ksps, if the
oversample ratio is 4, the sampling rate is 1083.32 kHz and ∆t (inverse of FS) is 923.088 ns.
Chapter 4 173

Downloading and Using Files
Downloading FIR Filter Coefficients
Downloading FIR Filter Coefficients
Use the following SCPI command line to download FIR filter coefficients from the PC to the signal
generator’s FIR memory:

:MEMory:DATA:FIR "<file_name>",osr,coefficient{,coefficient}

Use the following SCPI command line to query list data from FIR memory:

:MEMory:DATA:FIR? "<file_name>"

Sample Command Line

The following SCPI command downloads a set of FIR filter coefficient values (the values are for a Gaussian
filter) and names the file “FIR1”:

:MEMory:DATA:FIR "FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient values.
The file is then represented with this name in the FIR File catalog.

4 specifies the oversample ratio.

0,0,0,0,0,
0.000001,... represent FIR filter coefficients.
174 Chapter 4

Downloading and Using Files
Downloading FIR Filter Coefficients
Selecting a Downloaded User FIR Filter as the Active Filter

Using FIR Filter Data for Custom Modulation

Use the following steps to select user FIR filter data as the active filter for a custom modulation format.

Press Mode > Custom >

For the Real Time I/Q Baseband mode:

• Press Real Time I/Q Baseband > Filter > Select > User Fir > (Highlight File) > Select File
Press Mode Setup > Custom On
Via the remote interface:
[:SOURce]:RADio:CUSTom:FILTer "<file_name>"
[:SOURce]:RADio:CUSTom[:STATe] On

For the Arb Waveform Generator mode:

• Press Arb Waveform Generator > Digital Mod Define > Filter > Select > User Fir >
(Highlight File) > Select File
Press Mode Setup > Digital Modulation On
Via the remote interface:
[:SOURce]:RADio:DMODulation:ARB:FILTer "<file_name>"
[:SOURce]:RADio:DMODulation:ARB[:STATe] On

Troubleshooting FIR Filter Coefficient File Download Problems

NOTE Review “Data Requirements and Limitations” on page 173.

Symptom Possible Cause

ERROR -321,
Out of memory

There is not enough memory available for the FIR coefficient file being downloaded.

Either reduce the FIR file size, or delete unnecessary files from memory.

ERROR -223,
Too much data

User FIR filter has too many symbols.

Real Time cannot use a filter with more than 64 symbols (512 symbols maximum for
ARB). You may have specified an incorrect oversample ratio in the filter table editor.
Chapter 4 175

Downloading and Using Files
Downloading Directly into Pattern RAM (PRAM)
Downloading Directly into Pattern RAM (PRAM)

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

Typically, the signal generator’s firmware generates the required data and framing structure and loads this
data into Pattern RAM (PRAM). The data is read by the baseband generator, which in turn is input to the I/Q
modulator. The signal generator can also accept data downloads directly into PRAM from a computer.

Programs created with applications such as MATLAB or MathCad® can generate data which can be
downloaded directly into PRAM in either a list format or a block format.

Direct downloads to PRAM allow complete control over bursting, which is especially helpful for designing
experimental or proprietary framing schemes.

The signal generator’s baseband generator assembly builds modulation schemes by reading data stored in
PRAM and constructing framing protocols according to the data patterns present. PRAM data can be
manipulated (types of protocols changed, standard protocols modified or customized, etc.) using either the
front panel interface, or remote-commands.

Preliminary Setup

CAUTION Set up the digital communications format before downloading data. This enables the signal
generator to define the modulation format, filter, and data clock. Activating the digital
communications format after the data has been downloaded to PRAM can corrupt the
downloaded data.

 Mathcad is a registered trademark of Mathsoft Engineering & Education Inc.
176 Chapter 4

Downloading and Using Files
Downloading Directly into Pattern RAM (PRAM)
Data Requirements and Limitations

1. Data format:

List Format: Because list format downloads are parsed before they are loaded into PRAM, data must be
8-bit, unsigned integers, from 0 to 255.

Block Format: Because the baseband generator reads binary data from the data generator, data must be in
binary form.

2. Total (data bits plus control bits) download size limitations are 32 megabytes with Option 601 and 256
megabytes with Option 602. Each sample for PRAM uses 4 bytes of data.

A data pattern file containing 8 megabits of modulation data must contain another 56 megabits of control
information. A file of this size requires 8 megabytes of memory.

3. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes data in bytes. Each byte contains 1 bit of “data field” information, and
seven bits of control information associated with the data field bit. See the following table for the
required data and control bits.

Bit Function Value Comments

0 Data 0/1 The data to be modulated; “unspecified” when burst (bit 2) = 0.

1 Reserved 0 Always 0.

2 Burst 0/1 Set to 1 = RF on.
Set to 0 = RF off.
For non-bursted, non-TDMA systems, this bit is set to 1 for all memory locations,
leaving RF output on continuously. For framed data, this bit is set to 1 for on timeslots
and 0 for off timeslots

3 Reserved 0 Always 0.

4 Reserved 1 Always 1.

5 Reserved 0 Always 0.

6 Event 1 Output 0/1 Set to 1 = a level transition at the EVENT 1 BNC connector.
Use examples: as a marker output to trigger external hardware when data pattern
restarts; toggling in alternate addresses to create a data-synchronous pulse train.

7 Pattern Reset 0/1 Set to 0 = continue to next sequential memory address.
Set to 1 = end of memory and restart memory playback.
Set to 0 for all bytes except last address of PRAM, where 1 restarts pattern.
Chapter 4 177

Downloading and Using Files
Downloading Directly into Pattern RAM (PRAM)
Downloading in List Format

NOTE Because of parsing, list data format downloads are significantly slower than block format
downloads.

SCPI Command to Download Data in List Format

:MEMory:DATA:PRAM:LIST <uint8>[,<uint8>,<...>]

This command downloads the list-formatted data directly into PRAM. The variable <uint8> is any of the
valid 8-bit, unsigned integer values between 0 and 255, as specified by the table on page 177. Note that each
value corresponds to a unique byte/address in PRAM.

Sample Command Line

For example, to burst a FIX4 data pattern of “1100” five times, then turn the burst off for 32 data periods
(assuming a 1-bit/symbol modulation format), the command is:

:MEMory:DATA:PRAM:LIST 85,21,21,20,20,21,21,20,20,21,21,20,20,21,21,20,20,21,
21,20,20,16,
16,16,16,16,16,16,16,16,16,16,144

21 signifies data = 1, burst = on (1)

20 signifies data = 0, burst = on (1)

16 signifies data = unspecified, burst = off (0)

85 enables event 1 trigger signifying the beginning of the data pattern

144 signifies data = unspecified, burst = off (0), pattern repeat = on (1)

Querying the Waveform Data

Use the following SCPI command line to determine whether there is a user-defined pattern in the PRAM:

:MEMory:DATA:PRAM?
178 Chapter 4

Downloading and Using Files
Downloading Directly into Pattern RAM (PRAM)
Downloading in Block Format

NOTE Because there is no parsing, block data format downloads are faster than list format
downloads.

SCPI Command to Download Data in Block Format

:MEMory:DATA:PRAM:BLOCk <datablock>

This command downloads the block-formatted data directly into pattern RAM.

NOTE The command syntax and downloading method for arbitrary block data depends on the
programming language and software libraries you are using.

If you are using Agilent Technologies’ VISA COM I/O Library (available in the Agilent IO
Libraries for Windows Version M.01.01.04), you can use the WriteIEEEBlock method,
which does not use the #ABC formatting parameter. Refer to the download program
“Downloading Using Visual Basic 6.0” on page 202 for an example of this method.

Sample Command Line

A sample command line:

:MEMory:DATA:PRAM:BLOCk #ABC

#A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary data

Example 1

:MEMory:DATA:PRAM:BLOCk #1912S407897

#1 1 decimal digits to follow

9 9 bytes of data to follow

12S407897 the ASCII representation of the data downloaded to the signal generator
Chapter 4 179

Downloading and Using Files
Downloading Directly into Pattern RAM (PRAM)
NOTE Not all binary values can be printed as ASCII characters. In fact, only ASCII characters
corresponding to decimal values 32 to 126 are printable keyboard characters. The above
example was chosen for simplicity. Typically, the binary value corresponding to your 8-bit
pattern is not printable.

Therefore, the program written to download and upload user files must correctly convert
between binary and the ASCII representation of the data sequence. The sample data above
is meaningless.

Modulating and Activating the Carrier
After downloading a file:

1. Set the carrier frequency.

2. Set the carrier amplitude.

3. Turn on modulation.

4. Turn on the RF output.

Viewing a PRAM Waveform
After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope. There is
delay (approximately 12-symbols) between a state change in the burst bit and the corresponding effect at the
RF out. This delay varies with symbol rate and filter settings, and requires compensation to advance the
burst bit in the downloaded PRAM file.
180 Chapter 4

Downloading and Using Files
Downloading Directly into Pattern RAM (PRAM)
Troubleshooting Direct PRAM Download Problems

NOTE Review “Data Requirements and Limitations” on page 177.

Symptom Possible Cause

The transmitted pattern is
interspersed with random,
unwanted data.

Pattern reset bit not set.

Ensure that the pattern reset bit (bit 7, value 128) is set on the last
byte of your downloaded data.

ERROR -223, Too much data PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the
appropriate hardware option.
Chapter 4 181

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Programming Examples for Generating and Downloading Files
The example programs in this section are for demonstration purposes only. You should be familiar with the
programming languages, development tools, and debug procedures.

Waveform Generation Using MATLAB®

Matlab is a programming tool that can be used to create specialized waveforms, such as radar and pulse
sequences. Using Matlab and Agilent’s integrated Download Assistant utility, you can create a single
function that will build a waveform, preconfigure the waveform with playback setting information, and
download the waveform to the signal generator’s volatile memory for playback or sequencing.

The following Matlab M-file programming example generates and downloads a pulse pattern waveform file
through the PSG vector signal generator’s GPIB interface. A copy of this program is available on the
PSG Documentation CD-ROM as pulsepat.m.

% Script file: pulsepat.m

%

% Purpose:

%To calculate and download an arbitrary waveform file that simulates a

%simple antenna scan pulse pattern to the PSG vector signal generator.

%

% Define Variables:

% n -- counting variable (no units)

% t -- time (seconds)

% rise -- raised cosine pulse rise-time definition (samples)

% on -- pulse on-time definition (samples)

% fall -- raised cosine pulse fall-time definition (samples)

% i -- in-phase modulation signal

% q -- quadrature modulation signal

n=4; % defines the number of points in the rise-time and
fall-time

t=-1:2/n:1-2/n; % number of points translated to time

 MATLAB is a registered trademark of MathWorks, Inc.
182 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
rise=(1+sin(t*pi/2))/2; % defines the pulse rise-time shape

on=ones(1,120); % defines the pulse on-time characteristics

fall=(1+sin(-t*pi/2))/2; % defines the pulse fall-time shape

off=zeros(1,896); % defines the pulse off-time characteristics

% arrange the i-samples and scale the amplitude to simulate an antenna scan

% pattern comprised of 10 pulses

i = .707*[rise on fall off...

[.9*[rise on fall off]]...

[.8*[rise on fall off]]...

[.7*[rise on fall off]]...

[.6*[rise on fall off]]...

[.5*[rise on fall off]]...

[.4*[rise on fall off]]...

[.3*[rise on fall off]]...

[.2*[rise on fall off]]...

[.1*[rise on fall off]]];

% set the q-samples to all zeroes

q = zeros(1,10240);

% define a composite iq matrix for download to the PSG using the

% PSG/ESG Download Assistant

IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the
waveform

Markers = zeros(2,length(IQData)); % fill marker array with zero, i.e no
markers set

Markers(1,1) = 1; % set marker to first point of playback

% make a new connection to the PSG over the GPIB interface
Chapter 4 183

Downloading and Using Files
Programming Examples for Generating and Downloading Files
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established

[status, status_description,query_result] = agt_query(io,'*idn?');

if (status < 0) return; end

% set the carrier frequency and power level on the PSG using the PSG Download
Assistant

[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency
20000000000');

[status, status_description] = agt_sendcommand(io, 'POWer 0');

% define the ARB sample clock for playback

sampclk = 40000000;

% download the iq waveform to the PSG baseband generator for playback

[status, status_description] = agt_waveformload(io, IQData, 'pulsepat', sampclk,
'play', 'no_normscale', Markers);

% turn on RF output power

[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON')

You can test your program by performing a simulated plot of the in-phase modulation signal in Matlab (see
Figure 4-2 on page 185). To do this, enter plot (i) at the Matlab command prompt.
184 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Figure 4-2 Simulated Plot of In-Phase Signal

The following additional Matlab M-file programming examples are available on the
PSG Documentation CD-ROM:

barker.m This programming example calculates and downloads an arbitrary waveform file that
simulates a simple 7–bit barker RADAR signal to the PSG vector signal generator.

chirp.m This programming example calculates and downloads an arbitrary waveform file that
simulates a simple compressed pulse RADAR signal using linear FM chirp to the PSG
vector signal generator.

FM.m This programming example calculates and downloads an arbitrary waveform file that
simulates a single tone FM signal with a rate of 6 KHz, deviation of =/- 14.3 KH, Bessel
null of dev/rate=2.404 to the PSG vector signal generator.

nchirp.m This programming example calculates and downloads an arbitrary waveform file that
simulates a simple compressed pulse RADAR signal using non-linear FM chirp to the
PSG vector signal generator.

pulse.m This programming example calculates and downloads an arbitrary waveform file that
simulates a simple pulse signal to the PSG vector signal generator.

pulsedroop.m This programming example calculates and downloads an arbitrary waveform file that
simulates a simple pulse signal with pulse droop to the PSG vector signal generator.
Chapter 4 185

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Downloading Waveforms from Matlab

This procedure describes how to download a waveform file from Matlab to the signal generator’s volatile
memory.

When using the Download Assistant with Matlab, the I/O interface definition and the download command
are embedded in the M-file program (see the programming example in “Waveform Generation Using
MATLAB®” on page 182). To download the waveform to the signal generator, execute the program in the
Matlab command window by entering the name of the M-file (for example, pulsepat) at the command
prompt. The Download Assistant will be instructed to download the waveform file to the signal generator.

For more information about the Download Assistant, go to www.agilent.com and search for “Download
Assistant” in Test & Measurement.

Waveform Generation Using C++
This example program uses C++ to create an I/Q waveform and then write the data to a file on your PC. The
I/Q data must be in bytes and in MSB/LSB, big–endian order. This program creates an integer array for the I
and Q values, then casts each I and Q value to a char data type. The LSB/MSB bytes are swapped, and the
iq_Data char array is written to the C:\IQ_DataC file on the PC.

Once the file is created, you can download the file to the signal generator using FTP. For information on
FTP, see “Using FTP” on page 162. In addition, the programs “Downloading Using C++ and VISA” on
page 192 or “Downloading Using Visual Basic 6.0” on page 202 can also be used to download the file to the
signal generator.

//***

// PROGRAM NAME:Create_Data.cpp

// PROGRAM DESCRIPTION: Create I/Q data and save it to a file.

//

// This program creates a sine and cosine wave using 200 I/Q data samples. The samples

// are calculated, scaled using the AMPLITUDE constant of 32767, and then stored in an

// array named iq_Data. The AMPLITUDE scaling allows for full range I/Q modulator DAC

// values.

// Data must be in MSB/LSB, big-endian format. If your PC uses LSB/MSB format, then the

// integer bytes must be swapped. This program uses a char data type and swaps the byte

// positions before saving the data to a file.

//

//***
186 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
#include "stdafx.h"

#include <iostream>

#include <fstream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main (void)

{

ofstream out_stream; // write the I/Q data to a file

 const unsigned int SAMPLES =200; // number of I/Q sample pairs in the waveform

 const short AMPLITUDE = 32767; // amplitude between 0 and full scale dac value

const double two_pi = 6.2831853;

int intCount;

 //allocate buffer for waveform

 short* iq_Data = new short[2*SAMPLES];// need two bytes for each integer

 if (!iq_Data)

 {

 cout << "Could not allocate data buffer." << endl;

 return 1;

 }

 out_stream.open("C:\\IQ_DataC");// create a data file

 if (out_stream.fail())

 {

 cout << "Input file opening failed" << endl;

 exit(1);

 }

 // generate the sample data for I and Q. The I channel will have a

 // sine wave and the Q channel will have a cosine wave.

Chapter 4 187

Downloading and Using Files
Programming Examples for Generating and Downloading Files
 for (intCount=0; intCount<SAMPLES; ++intCount)

 {

 iq_Data[2*intCount] = AMPLITUDE * sin(two_pi*intCount/(float)SAMPLES);

 iq_Data[2*intCount+1] = AMPLITUDE * cos(two_pi*intCount/(float)SAMPLES);

 }

 // make sure bytes are in the order MSB (most significant byte) first. (PC only).

 char* cptr = (char*)iq_Data;// cast the integer values to characters

 // need four bytes for every I/Q data sample

 for (int i=0; i<(4*SAMPLES); i+=2)

 {

 char temp = cptr[i];// swap LSB and MSB bytes

 cptr[i]=cptr[i+1];

 cptr[i+1]=temp;

 }

 // now write the buffer to a file

cout<<"Writing file......"<<endl;

 out_stream.write((char*)iq_Data, 4*SAMPLES);

cout<<"Finished"<<endl;

 return 0;

}

188 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Waveform Generation using Visual Basic 6.0®

This program example uses Visual Basic 6.0 to create an I/Q waveform and then write the data to a file on
your PC. The I/Q data must be in bytes and in MSB/LSB, big–endian order. This program creates an integer
array for the I and Q values, then casts each I and Q value to a hexadecimal data type. The hexadecimal data
is parsed, and the LSB/MSB bytes are swapped and written to the iq_data() array. The iq_data() array is
written to the IQ_DataVB file on the PC.

Once the file is created, you can download the file to the signal generator using FTP. For information on
FTP, see “Using FTP” on page 162. In addition, the programs “Downloading Using C++ and VISA” on
page 192 or “Downloading Using Visual Basic 6.0” on page 202 can also be used to download the file to the
signal generator.

'***

' Program Name: Create_IQData

' Program Description: This program creates a sine and cosine wave using 200 I/Q data

' samples. Each I and Q value is represented by a 2 byte integer. The sample points are

' calculated, scaled using the AMPLITUDE constant of 32767, and then stored in an array

' named iq_Data. The AMPLITUDE scaling allows for full range I/Q modulator DAC values.

' Data must be in 2's complemant, MSB/LSB big-endian format. If your PC uses LSB/MSB

' format, then the integer bytes must be swapped. This program converts the integer

' array values to hex data types and then swaps the byte positions before saving the

' data to the IQ_DataVB file.

'**

Private Sub Create_IQData()

Dim index As Integer

Dim AMPLITUDE As Integer

Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

Dim loHex As String

Dim hiHex As String

Dim strSrc As String

Dim numPoints As Integer

 Visual Basic is a registered trademark of Microsoft Corporation
Chapter 4 189

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Dim FileHandle As Integer

Dim data As Byte

Dim iq_data() As Byte

Dim strFilename As String

strFilename = "C:\IQ_DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers for the waveform

AMPLITUDE = 32767 ' Scale the amplitude for full range of the signal generators

 ' I/Q modulator DAC

pi = 3.141592

Dim intIQ_Data(0 To 2 * SAMPLES - 1) 'Array for I and Q integers: 400

ReDim iq_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

'Create an integer array of I/Q pairs

 For index = 0 To (SAMPLES - 1)

 intIQ_Data(2 * index) = CInt(AMPLITUDE * Sin(2 * pi * index / SAMPLES))

 intIQ_Data(2 * index + 1) = CInt(AMPLITUDE * Cos(2 * pi * index / SAMPLES))

 Next index

 'Convert each integer value to a hex string and then write into the iq_data byte array

 'MSB, LSB ordered

 For index = 0 To (2 * SAMPLES - 1)

 strSrc = Hex(intIQ_Data(index)) 'convert the integer to a hex value

 If Len(strSrc) <> 4 Then

 strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F

 End If 'Pad with 0's if needed to get 4

 'characters i.e '0' to "0000"
190 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
 hiHex = Mid$(strSrc, 1, 2) 'Get the first two hex values (MSB)

 loHex = Mid$(strSrc, 3, 2) 'Get the next two hex values (LSB)

 loByte = CByte("&H" & loHex) 'Convert to byte data type LSB

 hiByte = CByte("&H" & hiHex) 'Convert to byte data type MSB

 iq_data(2 * index) = hiByte 'MSB into first byte

 iq_data(2 * index + 1) = loByte 'LSB into second byte

 Next index

 'Now write the data to the file

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iq_data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len = numPoints + 1

On Error GoTo file_error

 For index = 0 To (numPoints)

 data = iq_data(index)

 Put #FileHandle, index + 1, data 'Write the I/Q data to the file

 Next index

Close #FileHandle

Call MsgBox("Data written to file " & strFilename, vbOKOnly, "Download")

Exit Sub

file_error:
Chapter 4 191

Downloading and Using Files
Programming Examples for Generating and Downloading Files
 MsgBox Err.Description

 Close #FileHandle

End Sub

Downloading Using C++ and VISA
This example program uses C++ and the LAN interface to download a file directly to the signal generator’s
non-volatile memory.

You must include header files and resource files for library functions needed to run this program. Refer to
“Running C/C++ Programming Examples” on page 33 for more information.

The Download.cpp program writes a waveform data file to the signal generator’s non-volatile waveform
memory. To load the waveform data to volatile (WFM1) memory, change the instDestfile declaration
to: “USER/BBG1/WAVEFORM/”.

NOTE Refer to “Understanding ARB Waveform File Composition and Encryption” on page 166
for information on uploading or extracting waveforms from the signal generator.

While this program is designed to download a waveform file to the signal generator using the LAN
interface, it can be modified to use the GPIB by replacing the signal generator’s I/O interface
instOpenString object declaration with “GPIB::19::INSTR”.

The program also includes some error checking to alert you when problems arise while trying to download
files. This includes checking to see if the file exists.

//***

// PROGRAM NAME:Download.cpp

//

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform data. Send a

// file in chunks of ascii data to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP to download a file to the baseband generator's

// non-volatile memory. The program allocates a memory buffer on the PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is

// limited by the memory on your PC or workstation, so the buffer size can be
192 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
// increased or decreased to meet your system limitations.

//

// While this program uses the LAN/TCPIP to download a waveform file into

// non-volatile memory, it can be modified to store files in volatile memory

// WFM1 using GPIB by setting the instrOpenString = "TCPIP0::xxx.xxx.xxx.xxx::INSTR"

// declaration with "GPIB::19::INSTR"

//

// The program also includes some error checking to alert you when problems arise

// while trying to download files. This includes checking to see if the file exists.

//**

// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator. (or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile directory paths

// as needed.

//**

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling and running

char* instOpenString ="TCPIP0::xxx.xxx.xxx.xxx::INSTR"; // your instrument's IP address

const char* localSrcFile = "\\Files\\IQ_DataC";

const char* instDestFile = "/USER/WAVEFORM/IQ_DataC";

const int BUFFER_SIZE = 100*1024;// Size of the copy buffer
Chapter 4 193

Downloading and Using Files
Programming Examples for Generating and Downloading Files

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);// Open the default resource manager

 // TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);

 if (status)// If any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");// Open local source file for binary reading

 if (!file) // If any errors display the error and exit the program

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot lseek to the end of file.\n");

 return 0;

 }

194 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
 long lenToSend = ftell(file);// Number of bytes in the file

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot lseek to the start of file.\n");

 return 0;

 }

 unsigned char* buf = new unsigned char[BUFFER_SIZE]; // Allocate char buffer memory

 if (buf && lenToSend)

 {

 // Do not send the EOI (end of instruction) terminator on any write except the

 // last one

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 0);

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen represents the

// number of bytes and the actual number of bytes is the variable lenToSend

 sprintf((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);
Chapter 4 195

Downloading and Using Files
Programming Examples for Generating and Downloading Files
// Send the command and header to the signal generator

 viWrite(vi, s2, strlen((char*)s2), 0);

 long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 viWrite(vi, buf, numRead, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOI

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

 char* newLine = "\n";

 viWrite(vi, (unsigned char*)newLine, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);
196 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
 viClose(vi);

 viClose(defaultRM);

 return 0;

}

Downloading Using HP BASIC for Windows

The following program uses HP BASIC for Windows to download a waveform into WFM1. The
waveform generated by this program is the same as the SINE_TEST_WFM waveform file available in the
signal generator’s waveform memory.

This code is similar to the code shown in “Downloading Using HP BASIC for UNIX” on page 199, but there
is a formatting difference in line 130 and line 140. The signal generator uses MSB (most significant byte)
first, LSB (least significant) second, big–endian, format, and the PC stores data as LSB first and MSB
second. Line 140 is a data format statement that switches the byte position of the integer values to suit the
signal generator data requirements.

To download into NVWFM, replace line 190 with:

190 OUTPUT @Psg USING "#,K";":MMEM:DATA ""NVWFM:data_file"", #"

NOTE Refer to “Understanding ARB Waveform File Composition and Encryption” on page 166
for information on uploading or extracting waveforms from the signal generator.

The OUTPUT command, USING "#,K" formats the data. The pound symbol (#) suppresses the automatic
end of line (EOL) output. This allows multiple output commands to be concatenated as if they were a single
output. The "K" instructs HP BASIC to output following numbers or strings in the default format.

10 ! RE-SAVE "BASIC_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data Generated"
Chapter 4 197

Downloading and Using Files
Programming Examples for Generating and Downloading Files
120 Nbytes=4*Num_points

130 ASSIGN @Psg TO 719

140 ASSIGN @Psgb TO 719;FORMAT MSB FIRST

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @Psg USING "#,K";"MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @Psg USING "#,K";Ndigits$

210 OUTPUT @Psg USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @Psgb;Int_array(*)

240 OUTPUT @Psg;END

250 ASSIGN @Psg TO *

260 ASSIGN @Psgb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.
198 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Downloading Using HP BASIC for UNIX
The following program uses HP BASIC for UNIX to download waveforms. The code is similar to that
shown for “Downloading Using HP BASIC for Windows ” on page 197, but there is a formatting
difference in line 130 and line 140 as workstations and the signal generator use the same MSB/LSB format.

NOTE Refer to “Understanding ARB Waveform File Composition and Encryption” on page 166
for information on uploading or extracting waveforms from the signal generator.

The OUTPUT command, USING "#,K", formats the data. The pound symbol (#) suppresses the automatic
end of line (EOL) output. This allows multiple output commands to be concatenated as if they were a single
output. The “K” instructs HP BASIC to output the following numbers or strings in the default format.

10 ! RE-SAVE "UNIX_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of the GPIB card in the
computer, and 19 is the address of the signal generator. This I/O path is used to send ASCII data
to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data_file, that will receive the waveform data. The name, data_file, will appear in the
signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that Psgb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
Chapter 4 199

Downloading and Using Files
Programming Examples for Generating and Downloading Files
80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @Psg TO 719;FORMAT ON

140 ASSIGN @Psgb TO 719;FORMAT OFF

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @Psg USING "#,K";"MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @Psg USING "#,K";Ndigits$

210 OUTPUT @Psg USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @Psgb;Int_array(*)

240 WAIT 2

241 OUTPUT @Psg;END

250 ASSIGN @Psg TO *

260 ASSIGN @Psgb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.
200 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 - the address of the GPIB card in the
computer, and 19 is the address of the signal generator. This I/O path is used to send ASCII data
to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data_file, that will receive the waveform data. The name, data_file, will appear in the
signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that Psgb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
Chapter 4 201

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Downloading Using Visual Basic 6.0
This sample program uses Visual Basic 6.0 and the LAN interface to download a file to the signal generator.
The file used in this program, IQ_DataVB, can be created by running the Create_IQData program shown in
the section “Waveform Generation using Visual Basic 6.0®” on page 189. The file IQ_DataC can also be
created and used. Refer to “Waveform Generation Using C++” on page 186.

This Visual Basic program uses library functions that must be referenced by the VB project. Refer to
“Running Visual Basic 6.0 Programming Examples” on page 34 for information on the requirements to run
this program.

The Download_File program writes a waveform data file to the signal generator’s non-volatile waveform
memory. To load the waveform data to volatile WFM1 memory, change the instDestfile declaration
to: “USER/BBG1/WAVEFORM/”.

NOTE Refer to “Understanding ARB Waveform File Composition and Encryption” on page 166
for information on uploading or extracting waveforms from the signal generator.

While this program is designed to download a waveform file to the signal generator using the LAN
interface, it can be modified to use the GPIB by replacing the signal generator’s I/O interface
instOpenString object declaration with “GPIB::19::INSTR”. Refer to “Running Visual Basic 6.0
Programming Examples” on page 34 for more information.

NOTE The example program listed here uses the VISA COM I/O API, which includes the
WriteIEEEBlock method. This method eliminates the need to format the download
command with arbitrary block information such as defining number of bytes and byte
numbers. Refer to “Sample Command Line Using SCPI” on page 159 for more information

This program also includes some error checking to alert you when problems arise while trying to download
files. This includes checking to see if the file exists.

'***

' Program Name: Download_File

' Program Description: This program uses Microsoft Visual Basic 6.0 and the Agilent

' VISA COM I/O Library to download a waveform file to the signal generator.

'

' The program downloads a file (the previously created ‘IQ_DataVB’ file) to the signal

' generator. Refer to the programming guide for information on binary

' data requirements for file downloads. The waveform data 'IQ_DataVB' is

' downloaded to the signal generator's non-volatile memory(NVWFM)
202 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
' " /USER/WAVEFORM/IQ_DataVB". For volatile memory(WFM1) download to the

' " /USER/BBG1/WAVEFORM/IQ_DataVB" directory.

'

' You must reference the Agilent VISA COM Resource Manager and VISA COM 1.0 Type

' Library in your Visual Basic project in the Project/References menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the Agilent

' VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the BasicFormattedIO.dll

' Use a statement such as "Dim Instr As VisaComLib.FormattedIO488" to

' create the formatted I/O reference and use

' "Set Instr = New VisaComLib.FormattedIO488" to create the actual object.

'**

' IMPORTANT: Use the TCPIP address of your signal generator in the rm.Open

' declaraion. If you are using the GPIB interface, reference the Agilent VISA COM GPIB 1.0

' Type Library in your project and use the "GPIB::19::INSTR" statement in the rm.Open

' declaration.

'**

Private Sub Download_File()

' The following four lines declare IO objects and instantiate them.

Dim rm As VisaComLib.ResourceManager

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedIO488

Set SigGen = New VisaComLib.FormattedIO488

' NOTE: Use the IP address of your signal generator in the rm.Open declaration

Set SigGen.IO = rm.Open("TCPIP0::000.000.000.000")

Dim data As Byte

Dim iq_data() As Byte

Dim FileHandle As Integer

Dim numPoints As Integer
Chapter 4 203

Downloading and Using Files
Programming Examples for Generating and Downloading Files
Dim index As Integer

Dim Header As String

Dim response As String

Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ_DataVB" ‘File Name and location on PC

 'Data will be saved to the signal generator’s NVWFM
‘/USER/WAVEFORM/IQ_DataVB directory.

FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a download

 .IO.Timeout = 5000 'Timeout 50 seconds

 .WriteString "*RST" 'Reset the signal generator.

End With

numPoints = (FileLen(strFilename)) 'Get number of bytes in the file: 800 bytes

ReDim iq_data(0 To numPoints - 1) 'Dimension the iq_data array to the

 'size of the IQ_DataVB file: 800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the file for binary read

On Error GoTo file_error

For index = 0 To (numPoints - 1) 'Write the IQ_DataVB data to the iq_data array

 Get #FileHandle, index + 1, data '(index+1) is the record number

 iq_data(index) = data

Next index

204 Chapter 4

Downloading and Using Files
Programming Examples for Generating and Downloading Files
 Close #FileHandle 'Close the file

'Write the command to the Header string. NOTE: syntax

 Header = "MMEM:DATA ""/USER/WAVEFORM/IQ_DataVB"","

 'Now write the data to the signal generator's non-volatile memory (NVWFM)

 SigGen.WriteIEEEBlock Header, iq_data

 SigGen.WriteString "*OPC?" 'Wait for the operation to complete

 response = SigGen.ReadString 'Signal generator reponse to the OPC? query

 Call MsgBox("Data downloaded to the signal generator", vbOKOnly, "Download")

 Exit Sub

errorhandler:

 MsgBox Err.Description, vbExclamation, "Error Occurred", Err.HelpFile, Err.HelpContext

Exit Sub

file_error:

 Call MsgBox(Err.Description, vbOKOnly) 'Display any error message

 Close #FileHandle

End Sub
Chapter 4 205

Downloading and Using Files
Programming Examples for Generating and Downloading Files
206 Chapter 4

Index

Numerics
2’s complement, 158
8757D pass-thru commands, using, 71

A
abort function, 7
address

GPIB address, 6
IP address, 13

Agilent
BASIC, 36
SICL, 35
VISA, 6, 12, 25, 35

Agilent GPIB card, 4
Agilent IO Config, 16, 74
Agilent IO library, 6, 12
Agilent Signal Studio, 166
Agilent VISA COM Resource Manager 1.0, 34
ARB OFF On softkey, 164
ARB waveform data, 157
ARB waveform files

composition, 166
downloading, 166, 167, 182, 197
encryption, 166
extracting, 166
generating, 182
headers, 166
use in other PSGs, 166

arbitrary block data, 159
ASCII

characters, 168
data, 10
format, 173

AUTOGEN_PRAM_1, 166
AUTOGEN_WAVEFORM, 166

B
baseband operation

status group, 136
BASIC, 35, 36, 39, 42, 182
BASIC commands

ABORT, 8
CLEAR, 10
ENTER, 11

BASIC commands (continued)
LOCAL, 9
LOCAL LOCKOUT, 9
OUTPUT, 10
REMOTE, 8

Berkeley sockets, 17
big-endian, 157, 159, 189
binary, 177
binary downloads, 168, 171
binary format, 158, 168
bit format

description, 168
downloading, 169

bit status monitor, 122
bit values, 121
blanking

pulse, 159
RF, 159

block format, 179

C
C++, 182
C/C++, include files, 33
CLEAR, 10
CLS command, 125
coefficients, 173
command line, 159
command prompt, 14, 106
command syntax, 160
commands

abort, 7
clear, 10
enter, 11
local, 9
local lockout, 9
output, 10
remote, 8

computer interfaces, 3
condition registers, description, 130
control data bits, 168
controller, 7
Index 207

Index

D
data

directories, 169
volatility, 156

data questionable filters
calibration transition, 152
frequency transition, 146
modulation transition, 149
power transition, 143
transition, 141

data questionable groups
calibration status, 151
frequency status, 145
modulation status, 148
power status, 142
status, 139

data questionable registers
calibration condition, 152
calibration event, 152
calibration event enable, 153
condition, 140
event, 141
event enable, 141
frequency condition, 146
frequency event, 147
frequency event enable, 147
modulation condition, 149
modulation event, 150
modulation event enable, 150
power condition, 143
power event, 143
power event enable, 144

data requirements, 158, 168
delay, 180
DHCP, 13, 14
directories

binary, 169
bit, 169

DNS, 15
DOS command prompt, 18
Download Assistant, 186
download libraries, 6
downloading

ARB waveform data, 166
C++, 192

downloading (continued)
encrypted ARB waveform files, 167
files, 155
using C++ and VISA, 192
using HP BASIC, 197
using HP BASIC for UNIX, 199
using Visual Basic, 201
VISA, 192
waveforms, 159

E
EnableRemote, 8
enabling SRQ, 124
encryption, 166
enter, 11
errors, 15, 29
ESE commands, 125
EVENT 1 2 3 4, 158
event registers, description, 130
examples

ARB waveform
downloading, 182
generating, 182
loading, 164
playing, 164

bit directory, downloading to, 169
downloading with C++ and VISA, 192
downloading with HP BASIC for UNIX, 199
downloading with HP BASIC for Windows, 197
downloading with Visual Basic, 201
FIR filter coefficients, downloading, 174
GPIB programming, 35
Java, 106
LAN programming, 74
pass-thru commands, 71
PERL, 74
PRAM, 178
PRAM downloads, 179
requirements, 32
RS-232 programming, 109
serial interface, 109
Telnet, 22
user files as transmitted data, 172

extracting waveforms, 166
Index208

Index

F
files

downloading, 155, 182
encryption, 166
error messages, 29
extracting, 166
generating, 182
headers, 166
including, 33
managing, 155
requirements, 157
transferring, 22
uploading, 166
using, 155

filters
See also transition filters
negative transition, description, 130
positive transition, description, 130

FIR filter coefficients, downloading, 173
firmware status, monitoring, 122
FTP

commands
get, 162
put, 162

downloading encrypted files, 167
LAN, 12
using, 22, 162

function statements, 7

G
GPIB

address, 6, 75
cables, 6
configuration, 6
controller, 7
downloading, 159
function statements, 7
interface card (PC), 4, 5
interface card, installing, 4
interface, description, 3
IO libraries, 6
listener, 7
on UNIX, 5
program examples, 35

GPIB (continued)
remote operation, 2
talker, 7
using, 4
verifying operation, 7

H
hardware status, monitoring, 122
header file, 157
headers, 166
hexadecimal data, 189
hostname, 13, 75
HP BASIC for UNIX, 199
HyperTerminal, 27

I
iabort, 8
ibloc, 9
ibstop, 8
ibwrt, 11
iclear, 10
IEEE, 4
IEEE 488.2 common commands, 125
igpibllo, 9
instrument status, monitoring, 118
integer values, 158
interface card, GPIB (PC), 4, 5
interface types, 159
interfaces, computer, 3
IO Config program, 74
IO libraries, 2, 3, 6, 25, 32
IP

address, 13
sockets LAN, 17

IQ data, 157
iremote, 8

J
Java program example, 106

L
LAN

client, 74
configuring, 13
Index 209

Index

LAN (continued)

DHCP configuration, 13, 14
downloading, 159
FTP, 12
hostname, 13
interface, description, 3
IO libraries, 12
IP address, 13
Java, 106
overview, 12
PERL, 104
ping errors, 15
program examples, 74
remote operation, 2
sockets, 12, 74
sockets LAN, 12
sockets using C, 75
Telnet, 12, 18
verifying operation, 14
VXI-11, 12, 74

LAN services setup, 14
languages, programming, 3
libraries, IO, 2, 3, 6, 12, 25, 32
list format, 178
list, error messages, 29
listener, 7
local, 9
local echo telnet, 21
local lockout, 9
LSB/MSB, 189

M
manual operation, 8
marker file, 157, 159
marker file destinations, 158
marker file directories, 158
MATLAB program

downloading waveforms, 186
example, 182

MEM
DATA command, 167

memory
non-volatile, 156
types, 156
volatile, 156

MEMory command, 164
MMEM

DATA command, 167
modulation on, 180
MSB/LSB format, 157
MS-DOS command prompt, 14, 18, 22

N
National Instruments

GPIB interface card, 5
NI-488.2, 35
NI-488.2 include files, 33
PCI-GPIB interface requirements, 35
VISA, 6, 25

negative transition filter, description, 130
NI-488.2

EnableRemote, 8
GPIB, 6
iblcr, 10
ibloc, 9
ibrd, 11
ibstop, 8
ibwrt, 11
RS-232, 25
SetRWLS, 9

non-volatile memory, 156
NVWFM, 23, 156, 161, 164

O
OPC commands, 125
OSR oversample ratio, 173
output command, 10

P
pass-thru commands, 71
pattern RAM, downloading, 176
pc, 189
PCI-GPIB, 35
PERL, 74
ping errors, 15
ping program, 14
ping responses, 15
playing waveforms, 164
polling method (status registers), 123
Index210

Index

positive transition filter, description, 130
PRAM

comparison to user files, 168
data requirements, 177
description note, 169
downloading

block format, 179
list format, 178

programming examples
BASIC, 35, 36, 39, 42
C++, 186, 192
downloading waveforms, 182, 192
generating waveforms, 182
GPIB, 35
HP BASIC, 197
HP BASIC for UNIX, 199
Java, 74
LAN, 74
MATLAB, 182
NI-488 and C++, 44
NI-488.2 and C++, 35, 37, 41
pass-thru commands, 71
PERL, 74
requirements, 32
sockets and C, 74
using, 32
VISA and C, 35, 38, 47, 50
Visual Basic, 189, 201
VXI-11, 75

programming languages, 3, 32
pulse blanking, 159

Q
query waveform data, 178
queue, error, 29

R
ramp sweep, using pass-thru commands, 71
register system overview, 118
registers

See also status registers
condition, description, 130
data questionable calibration condition, 152
data questionable calibration event, 152

registers (continued)
data questionable calibration event enable, 153
data questionable condition, 140
data questionable event, 141
data questionable event enable, 141
data questionable frequency condition, 146
data questionable frequency event, 147
data questionable frequency event enable, 147
data questionable modulation condition, 149
data questionable modulation event, 150
data questionable modulation event enable, 150
data questionable power condition, 143
data questionable power event, 143
data questionable power event enable, 144
in status groups (descriptions), 130
overall system, 119, 120
standard event status, 132
standard event status enable, 132
standard operation condition, 134, 137
standard operation event, 135, 137
standard operation event enable, 135, 138
status byte, 128

remote annunciator, 109
remote function, 8
remote operation

interfaces, 2
RF blanking, 159
RF Output on, 180
RS-232

address, 109
baud rate, 26
cable, 26
configuration, 26
echo, 26
format parameters, 27
interface, 26
interface, description, 3
IO libraries, 25
overview, 25
program examples, 109
remote operation, 2
settings, baud rate, 109
verifying operation, 27
Index 211

Index

S
samples, 157, 158
sampling period, 173
SCPI commands

ARB waveform file downloads, 199
example programs

C++, 192
HP BASIC for Windows, 197
MATLAB, 182

downloading, 167
encryption, 166
formats, 159
loading waveforms, 164
playing waveforms, 164
sockets LAN, 17
status registers, 125
syntax, 160

SCPI error queue, 29
SCPI register model, 118
SCPI service, 17
SECUREWAVE directory, 166, 167
serial interface

description, 3
remote operation, 2

service request, 124
service request enable register, 129
service request method

status registers, 123
service request method, using, 123
SetRWLS, 9
SICL

GPIB, 6
iabort, 8
iclear, 10
igpibllo, 9
iprintf, 11
iremote, 8
iscanf, 11
LAN, 12
library, 35
RS-232, 25

signal generator
monitoring status, 118

Signal Studio, 166

sockets
example, 78
examples, 74
Java, 106
LAN, 17, 74, 75
PERL, 104
UNIX, 76
Windows, 77

software libraries, 160
SRE, 125, 129
SRQ, 123
SRQ method (status registers), 123
standard event

status enable register, 132
status group, 131
status register, 132

standard operation
condition register, 134, 137
event enable register, 135, 138
event register, 135, 137
status group, 133
transition filters, 135, 137

status byte
group, 127
overall register system, 119, 120
register, 128
register bits, 128

status groups
baseband operation, 136
data questionable, 139
data questionable calibration, 151
data questionable frequency, 145
data questionable modulation, 148
data questionable power, 142
registers, 130
standard event, 131
standard operation, 133
status byte, 127

status registers
See also registers
accessing information, 122
bit values, 121
hierarchy, 118
in status groups, 130
monitor, 122
Index212

Index

status registers (continued)

overall system, 119, 120
programming, 117
SCPI commands, 125
SCPI model, 118
setting and querying, 125
standard event, 132
standard event status enable, 132
system overview, 118
using, 121

STB command, 125
symbol rate, 173
symbols, 180
system requirements

C/C++ examples, 32

T
talker, 7
taps, 173
TCPIP, 17, 74, 75
Telnet

DOS command prompt, 18
example, 22
PC, 19
sockets LAN, 17
UNIX, 21, 22
using, 18
Windows 2000, 20

transition filters
See also filters
data questionable, 141
data questionable calibration, 152
data questionable frequency, 146
data questionable modulation, 149
data questionable power, 143
description, 130
standard operation, 135, 137

troubleshooting
ARB waveform data downloads, 165
ping response errors, 15
PRAM downloads, 181
RS-232, 28
user file downloads, 172
user FIR filter downloads, 175

two’s complement, 158

U
UNIX, 199
UNPRotected command, 166
unspecified markers, 159
user files, downloading, 168

V
VISA

description, 6
downloading, 192
include files, 33
LAN, 12
library, 12, 35, 160, 189
RS-232, 25
viClear, 10
viPrintf, 10
viScanf, 11
viTerminate, 8
VXI-11, 75

VISA COM IO Library, 34
Visual Basic

IDE, 34
references, 34

volatile memory, 156
VXI-11, 12, 16, 74, 75, 159

W
waveform downloading

HP BASIC for Windows, 197
with C++, 192
with HP BASIC for UNIX, 199
with Visual Basic 6.0, 201

waveform files
composition, 166
downloading, 182
encryption, 166
extracting, 166
generating, 182
headers, 166
use in other PSGs, 166

waveform generation
with C++, 186
with MATLAB, 182
with Visual Basic 6.0, 189
Index 213

Index

WFM1, 23, 156, 161, 164
Windows 2000, 20
Winsock, 17
WriteIEEEBlock, 160
Index214

	Title Page
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	IO Libraries
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting IO Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function Statements

	Using LAN
	1. Selecting IO Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP

	Using RS-232
	1. Selecting IO Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	Error Messages
	Error Message File
	Error Message Types

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples
	Running Visual Basic 6.0 Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	programming examples:NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C

	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C
	Using 8757D Pass-Thru Commands

	LAN Programming Examples
	Before Using the Examples
	VXI-11 LAN Programming
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status Register System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group

	4 Downloading and Using Files
	Types of Memory
	ARB Waveform Data
	Data Requirements and Limitations
	Downloading Waveforms
	Loading and Playing a Waveform
	Troubleshooting ARB Waveform Data Download Problems

	Understanding ARB Waveform File Composition and Encryption
	Downloading and Uploading Waveform Files
	Extracting Encrypted Waveform Files
	Downloading Encrypted Waveform Files

	Downloading User File Data
	Data Requirements and Limitations
	Bit and Binary Directories
	Selecting Downloaded User Files as the Transmitted Data
	Troubleshooting User File Download Problems

	Downloading FIR Filter Coefficients
	Data Requirements and Limitations
	Downloading FIR Filter Coefficients
	Selecting a Downloaded User FIR Filter as the Active�Filter
	Troubleshooting FIR Filter Coefficient File Download Problems

	Downloading Directly into Pattern RAM (PRAM)
	Preliminary Setup
	Data Requirements and Limitations
	Downloading in List Format
	Downloading in Block Format
	Modulating and Activating the Carrier
	Viewing a PRAM Waveform
	Troubleshooting Direct PRAM Download Problems

	Programming Examples for Generating and Downloading Files
	Waveform Generation Using MATLAB
	Waveform Generation Using C++
	Waveform Generation using Visual Basic 6.0
	Downloading Using C++
	Downloading Using HP BASIC for
	Downloading Using HP BASIC for UNIX
	Downloading Using Visual Basic 6.0

	Index

